IEEE/CAA Journal of Automatica Sinica
Citation: | Xi Jin, Jintao Wang and Peng Zeng, "End-to-end Delay Analysis for Mixed-criticality WirelessHART Networks," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 3, pp. 282-289, 2015. |
[1] |
Saifullah A, Xu Y, Lu C Y, Chen Y X. End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In:Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium. Chicago, United States:IEEE, 2011. 13-22
|
[2] |
Saifullah A, Xu Y, Lu C Y, Chen Y X. Real-time scheduling for WirelessHART networks. In:Proceedings of the 31st IEEE Real-Time Systems Symposium. San Diego, United States:IEEE, 2010. 150-159
|
[3] |
Saifullah A, Xu Y, Lu C Y, Chen Y X. Priority assignment for real-time flows inWirelessHART networks. In:Proceedings of the 23rd Euromicro Conference on Real-Time Systems. Porto, Portugal:IEEE, 2011. 35-44
|
[4] |
Soldati P, Zhang H B, Johansson M. Deadline-constrained transmission scheduling and data evacuation in WirelessHART networks. In:Proceedings of the 10th European Control Conference. Budapest, Hungary:IEEE, 2009. 1-7
|
[5] |
Vestal S. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In:Proceedings of the 28th IEEE Real-Time System Symposium. Tucson, United States:IEEE, 2007. 239-243
|
[6] |
de Niz D, Lakshmanan K, Rajkumar R. On the scheduling of mixedcriticality real-time task sets. In:Proceedings of the 30th IEEE Real-Time Systems Symposium. Washington, United States:IEEE, 2009. 291-300
|
[7] |
Baruah S, Li H H, Stougie L. Towards the design of certifiable mixed-criticality systems. In:Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications Symposium. Stockholm, Sweden:IEEE, 2010. 13-22
|
[8] |
Baruah S, Bonifaci V, D'Angelo G, Li H H, Marchietti-Spaccamela A, Megow N, Stougie L. Scheduling real-time mixed-criticality jobs. IEEE Transactions on Computers, 2012, 61(8):1140-1152
|
[9] |
Li H H, Baruah S. Global mixed-criticality scheduling on multiprocessors. In:Proceedings of the 24th Euromicro Conference on Real-Time Systems. Pisa, Italy:IEEE, 2012. 166-175
|
[10] |
Baruah S K, Bonifaci V, D'Angelo G, Marchietti-Spaccamela A, Van Der Ster S, Stougie L. Mixed-criticality scheduling of sporadic task systems. In:Proceedings of the 2011 European Conference on Algorithms. Berlin, Germany:Springer, 2011. 555-566
|
[11] |
Guan N, Ekberg P, Stigge M, Wang Y. Effective and efficient scheduling of certifiable mixed-criticality sporadic task systems. In:Proceedings of the 32nd IEEE Real-Time Systems Symposium. Vienna, Austria:IEEE, 2011. 13-23
|
[12] |
Huang H M, Gill C, Lu C Y. Implementation and evaluation of mixedcriticality scheduling approaches for sporadic tasks. ACM Transactions on Embedded Computing Systems, 2014, 13(4):1-25
|
[13] |
Tobuschat S, Axer P, Ernst R, Diemer J. IDAMC:a NoC for mixed criticality systems. In:Proceedings of the 19th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. Taipei, China:IEEE, 2013. 149-156
|
[14] |
Diemer J, Ernst R. Back suction:service guarantees for latency-sensitive on-chip networks. In:Proceedings of the 4th ACM/IEEE International Symposium on Networks-on-Chip. Grenoble, France:IEEE, 2010. 155-162
|
[15] |
Audsley N. Memory architectures for NoC-based real-time mixed criticality systems. In:Proceedings of the 1st Workshop on Mixed Criticality Systems. Vancouver, Canada:IEEE, 2013. 37-42
|
[16] |
Burns A, Davis R I. Mixed criticality on controller area network. In:Proceedings of the 25th Euromicro Conference on Real-Time Systems. Paris, France:IEEE, 2013. 125-134
|
[17] |
Herber C, Richter A, Rauchfuss H, Herkersdorf A. Spatial and temporal isolation of virtual CAN controllers. In:Proceedings of the 19th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. Taipei, China:IEEE, 2013. 1-7
|
[18] |
Tamas-Selicean D, Pop P, Steiner W. Synthesis of communication schedulers for TTEthernet-based mixed-criticality systems. In:Proceedings of the 9th International Conference on Hardware/software Codesign and System Synthesis. New York, United States:IEEE, 2011. 473-482
|
[19] |
Suethanuwong E. Scheduling time-triggered traffic in TTEthernet systems. In:Proceedings of the 17th Conference on Emerging Technologies and Factory Automation. Krakow, Poland:IEEE, 2012. 1-4
|
[20] |
Steiner W. Synthesis of static communication schedules for mixedcriticality systems. In:Proceedings of the 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshop. Newport Beach, United States:IEEE, 2011. 11-18
|
[21] |
Addisu A, George L, Sciandra V, Agueh M. Mixed criticality scheduling applied to JPEG2000 video streaming over wireless multimedia sensor networks. In:Proceedings of the 1st Workshop on Mixed Criticality Systems. Vancouver, Canada:IEEE, 2013. 1-6
|
[22] |
Joseph M, Pandya P. Finding response times in a real-time system. The Computer Journal, 1986, 29(5):390-395
|
[23] |
Camilo T, Silva J S, Rodrigues A, Boavida F. Gensen:a topology generator for real wireless sensor networks deployment. In:Proceedings of the 2007 International Conference on Software Technologies for Embedded and Ubiquitous Systems. Santorini Island, Greece:Springer, 2007. 436-445
|
[24] |
Bini E, Buttazzo C C. Measuring the performance of schedulability tests. Real-Time Systems, 2005, 30(1):129-154
|
[25] |
Liu J. Real-Time Systems. United States:Prentice Hall, 2000. 42-49
|