Citation: | Z. Feng and S. Yao, “Dynamic event-triggered active disturbance rejection formation control for constrained underactuated AUVs,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–3, Jun. 2024. |
[1] |
H.L. Wei, C. Shen, and Y. Shi, “Distributed Lyapunov-based model predictive formation tracking control for autonomous underwater vehicles subject to disturbances,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 8, pp. 5198–5208, 2021. doi: 10.1109/TSMC.2019.2946127
|
[2] |
J. Zhang, K. Li, and Y. Li, “Output-feedback based simplified optimized backstepping control for strict-feedback systems with input and state constraints,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1119–1132, 2021. doi: 10.1109/JAS.2021.1004018
|
[3] |
Z. Hao, X. Yue, H. Wen, and C. Liu, “Full-state-constrained non-certainty-equivalent adaptive control for satellite swarm subject to input fault,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 482–495, 2022. doi: 10.1109/JAS.2021.1004216
|
[4] |
K. Zhao, and Y. Song, “Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1265–1272, 2019. doi: 10.1109/TAC.2018.2845707
|
[5] |
Z . F e n g , R . L i , a n d L . W u , “ A d a p t i v e d e c e n t r a l i z e d c o n t r o l f o r c o n s t r a i n e d s t r o n g i n t e r c o n n e c t e d n o n l i n e a r s y s t e m s a n d i t s a p p l i c a t i o n t o i n v e r t e d p e n d u l u m , ” < i > I E E E T r a n s . N e u r a l N e t w . L e a r n . S y s t . < / i > , 2 0 2 3 . D O I :
|
[6] |
B. Yang, Q. Zhou, L. Cao, and R. Lu, “Event-triggered control for multi-agent systems With prescribed performance and full state constraints,” Acta Autom. Sin., vol. 45, no. 8, pp. 1527–1535, 2019.
|
[7] |
X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered control and estimation: A survey,” Int. J. Autom. Comput., vol. 18, no. 6, pp. 857–886, 2021. doi: 10.1007/s11633-021-1306-z
|
[8] |
G. Zhu, Y. Ma, Z. Li, R. Malekian, and M. Sotelo, “Dynamic event-triggered adaptive neural output feedback control for MSVs using composite learning,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 787–800, 2023. doi: 10.1109/TITS.2022.3217152
|
[9] |
J. Xu, Y. Cui, W. Xing, F. Huang, X. Du, Z. Yan, and D. Wu, “Distributed active disturbance rejection formation containment control for multiple autonomous underwater vehicles with prescribed performance,” Ocean Eng., vol. 259, p. 112057, 2022. doi: 10.1016/j.oceaneng.2022.112057
|
[10] |
J. Du, J. Li, and F. Lewis, “Distributed 3-D time-varying formation control of underactuated AUVs with communication delays based on data-driven state predictor,” IEEE Trans. Ind. Inf., vol. 19, no. 5, pp. 6963–6971, 2023. doi: 10.1109/TII.2022.3194632
|
[11] |
K. Zhao and Y. Song, “Neuroadaptive robotic control under time-varying asymmetric motion constraints: A feasibility-condition-free approach,” IEEE Trans. Cybern., vol. 50, no. 1, pp. 15–24, 2020. doi: 10.1109/TCYB.2018.2856747
|
[12] |
P. Ioannou and J. Sun, “Robust adaptive control,” Upper Saddle River, USA: PTR Prentice-Hall, 1996.
|