Citation: | L. Chang, C. Fu, and H. Zhang, “Global sampled-data output feedback stabilization for nonlinear systems via intermittent hold,” IEEE/CAA J. Autom. Sinica, 2024. |
[1] |
Z. Sheng, C. Lin, and S. Xu, “A semi-looped-functional for stability analysis of sampled-data systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1332–1335, 2023. doi: 10.1109/JAS.2023.123498
|
[2] |
P. Fortescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering. Hoboken, USA: John Wiley & Sons, 2011.
|
[3] |
X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1234–1251, 2023. doi: 10.1109/JAS.2022.105845
|
[4] |
S. Xiao, X. Ge, Q.-L. Han, and Y. Zhang, “Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks,” IEEE Trans. Cybern., vol. 52, p. 11, 2022.
|
[5] |
L. Wang, J. Xi, B. Hou, and G. Liu, “Limited-budget consensus design and analysis for multiagent systems with switching topologies and intermittent communications,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1724–1736, 2021. doi: 10.1109/JAS.2021.1004000
|
[6] |
L. Li and T. Li, “Stability analysis of sample data systems with input missing: A hybrid control approach,” ISA Trans., vol. 90, pp. 116–122, 2019. doi: 10.1016/j.isatra.2019.01.009
|
[7] |
C. Li, G. Feng, and X. Liao, “Stabilization of nonlinear systems via periodically intermittent control,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 54, no. 11, pp. 1019–1023, 2007.
|
[8] |
J. Yu, C. Hu, H. Jiang, and Z. Teng, “Synchronization of nonlinear systems with delays via periodically nonlinear intermittent control,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 7, pp. 2978–2989, 2012. doi: 10.1016/j.cnsns.2011.11.028
|
[9] |
B. Liu, M. Yang, T. Liu, and D. J. Hill, “Stabilization to exponential input-to-state stability via aperiodic intermittent control,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2913–2919, 2020.
|
[10] |
Y. Wu, Z. Sun, G. Ran, and L. Xue, “Intermittent control for fixed-time synchronization of coupled networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1488–1490, 2023. doi: 10.1109/JAS.2023.123363
|
[11] |
K. Zhao, C. Wen, Y. Song, and F. L. Lewis, “Adaptive uniform performance control of strict-feedback nonlinear systems with time-varying control gain,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 451–461, 2023. doi: 10.1109/JAS.2022.106064
|
[12] |
D. Zhao and M. M. Polycarpou, “Fault accommodation for a class of nonlinear uncertain systems with event-triggered input,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 235–245, 2022. doi: 10.1109/JAS.2021.1004314
|
[13] |
L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and S. I. Niculescu, “Recent developments on the stability of systems with aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309–335, 2017. doi: 10.1016/j.automatica.2016.10.023
|
[14] |
J. Peralez, V. Andrieu, M. Nadri, and U. Serres, “Event-triggered output feedback stabilization via dynamic high-gain scaling,” IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2537–2549, 2018. doi: 10.1109/TAC.2018.2794413
|
[15] |
V. Andrieu, M. Nadri, U. Serres, and J.-C. Vivalda, “Self-triggered continuous-discrete observer with updated sampling period,” Automatica, vol. 62, pp. 106–113, 2015. doi: 10.1016/j.automatica.2015.09.018
|
[16] |
F. Mazenc, M. Malisoff, and S.-I. Niculescu, “Sampled-data estimator for nonlinear systems with uncertainties and arbitrarily fast rate of convergence,” Automatica, vol. 142, p. 110361, 2022.
|
[17] |
H. Du, C. Qian, S. Li, and Z. Chu, “Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems,” Automatica, vol. 99, pp. 403–411, 2019. doi: 10.1016/j.automatica.2018.11.002
|
[18] |
J. Mao, Z. Xiang, S. Huang, and J.-j. Xiong, “Sampled-data output feedback stabilization for a class of upper-triangular nonlinear systems with input delay,” Int. J. Robust and Nonlinear Control, vol. 32, no. 12, pp. 6939–6961, 2022. doi: 10.1002/rnc.6177
|
[19] |
W. Liu and J. Huang, “Output regulation of linear systems via sampled-data control,” Automatica, vol. 113, p. 108684, 2020.
|
[20] |
F. Mazenc and L. Praly, “Adding integrations, saturated controls, and stabilization for feedforward systems,” IEEE Trans. Autom. Control, vol. 41, no. 11, pp. 1559–1578, 1996. doi: 10.1109/9.543995
|
[21] |
M.-S. Koo, H.-L. Choi, and J.-T. Lim, “Global regulation of a class of uncertain nonlinear systems by switching adaptive controller,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2822–2827, 2010. doi: 10.1109/TAC.2010.2069430
|
[22] |
C. Qian and J. Li, “Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach,” Int. J. Robust and Nonlinear Control: IFAC-Affiliated J., vol. 16, no. 9, pp. 441–463, 2006.
|
[23] |
P. Krishnamurthy and F. Khorrami, “A high-gain scaling technique for adaptive output feedback control of feedforward systems,” IEEE Trans. Autom. Control, vol. 49, no. 12, pp. 2286–2292, 2004. doi: 10.1109/TAC.2004.838476
|
[24] |
M. Krstic, “Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1668–1682, 2004. doi: 10.1109/TAC.2004.835361
|
[25] |
J. Sun and W. Lin, “A dynamic gain-based saturation control strategy for feedforward systems with long delays in state and input,” IEEE Trans. Autom. Control, vol. 66, no. 9, pp. 4357–4364, 2021. doi: 10.1109/TAC.2020.3030744
|
[26] |
F. Mazenc, S. Mondie, and R. Francisco, “Global asymptotic stabilization of feedforward systems with delay in the input,” IEEE Trans. Autom. Control, vol. 49, no. 5, pp. 844–850, 2004. doi: 10.1109/TAC.2004.828313
|
[27] |
M.-S. Koo and H.-L. Choi, “Non-predictor controller for feedforward and non-feedforward nonlinear systems with an unknown time-varying delay in the input,” Automatica, vol. 65, pp. 27–35, 2016. doi: 10.1016/j.automatica.2015.11.033
|
[28] |
L. Chang, C. Zhang, X. Zhang, and X. Chen, “Decentralised regulation of nonlinear multi-agent systems with directed network topologies,” Int. J. Control, vol. 90, no. 11, pp. 2338–2348, 2016.
|
[29] |
H. Li, X. Zhang, and S. Liu, “An improved dynamic gain method to global regulation of feedforward nonlinear systems,” IEEE Trans. Autom. Control, vol. 67, no. 6, pp. 2981–2988, 2022. doi: 10.1109/TAC.2021.3088787
|
[30] |
Q. Liu, X. Zhang, and H. Li, “Global regulation for feedforward systems with both discrete delays and distributed delays,” Automatica, vol. 113, p. 108753, 2020.
|
[31] |
H. Du, C. Qian, Y. He, and Y. Cheng, “Global sampled-data output feedback stabilisation of a class of upper-triangular systems with input delay,” IET Control Theory & Applications, vol. 7, no. 10, pp. 1437–1446, 2013.
|
[32] |
H. Du, C. Qian, and S. Li, “Global stabilization of a class of uncertain upper-triangular systems under sampled-data control,” Int. J. Robust and Nonlinear Control, vol. 23, no. 6, pp. 620–637, 2013. doi: 10.1002/rnc.2780
|
[33] |
X. Liu, W. Lin, C. Zhao, and Y. Hu, “Digital control of a family of time-delay feedforward systems with sparse sampling,” Systems & Control Letters, vol. 163, p. 105200, 2022.
|
[34] |
B. Zhou and X. Yang, “Global stabilization of feedforward nonlinear time-delay systems by bounded controls,” Automatica, vol. 88, pp. 21–30, 2018. doi: 10.1016/j.automatica.2017.10.021
|
[35] |
H. K. Khalil, Nonlinear Control. New York, USA: Pearson, 2015.
|