A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Chang, C. Fu, and H. Zhang, “Global sampled-data output feedback stabilization for nonlinear systems via intermittent hold,” IEEE/CAA J. Autom. Sinica, 2024.
Citation: L. Chang, C. Fu, and H. Zhang, “Global sampled-data output feedback stabilization for nonlinear systems via intermittent hold,” IEEE/CAA J. Autom. Sinica, 2024.

Global Sampled-Data Output Feedback Stabilization for Nonlinear Systems via Intermittent Hold

Funds:  This work was supported in part by research grants from the National Natural Science Foundation of China (12201365) and the Natural Science Foundation of Shandong Province (ZR2021QF106)
More Information
  • This paper introduces a sampled-data and intermittent-hold controller for nonlinear feedforward systems. The intermittent hold allows the control signal to be held in a portion of each sampled period, which does not require the control to be persistently implemented, and thus has less control time. But, less control time degrades the performance of a continuous-time control system or even destabilizes it, especially when the holding portion is sufficiently small. To tackle this obstacle, we first introduce the notion of activating rate to describe the intermittent hold, and give the sampled-data and intermittent-hold controller based on some tuning parameters. Then it is proved that for any activating rate, these parameters can be designed to achieve the stability of the considered systems under appropriately choosing the sampling size. Finally, simulation examples are given to illustrate the effectiveness of the proposed method.

     

  • loading
  • [1]
    Z. Sheng, C. Lin, and S. Xu, “A semi-looped-functional for stability analysis of sampled-data systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1332–1335, 2023. doi: 10.1109/JAS.2023.123498
    [2]
    P. Fortescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering. Hoboken, USA: John Wiley & Sons, 2011.
    [3]
    X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1234–1251, 2023. doi: 10.1109/JAS.2022.105845
    [4]
    S. Xiao, X. Ge, Q.-L. Han, and Y. Zhang, “Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks,” IEEE Trans. Cybern., vol. 52, p. 11, 2022.
    [5]
    L. Wang, J. Xi, B. Hou, and G. Liu, “Limited-budget consensus design and analysis for multiagent systems with switching topologies and intermittent communications,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1724–1736, 2021. doi: 10.1109/JAS.2021.1004000
    [6]
    L. Li and T. Li, “Stability analysis of sample data systems with input missing: A hybrid control approach,” ISA Trans., vol. 90, pp. 116–122, 2019. doi: 10.1016/j.isatra.2019.01.009
    [7]
    C. Li, G. Feng, and X. Liao, “Stabilization of nonlinear systems via periodically intermittent control,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 54, no. 11, pp. 1019–1023, 2007.
    [8]
    J. Yu, C. Hu, H. Jiang, and Z. Teng, “Synchronization of nonlinear systems with delays via periodically nonlinear intermittent control,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 7, pp. 2978–2989, 2012. doi: 10.1016/j.cnsns.2011.11.028
    [9]
    B. Liu, M. Yang, T. Liu, and D. J. Hill, “Stabilization to exponential input-to-state stability via aperiodic intermittent control,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2913–2919, 2020.
    [10]
    Y. Wu, Z. Sun, G. Ran, and L. Xue, “Intermittent control for fixed-time synchronization of coupled networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1488–1490, 2023. doi: 10.1109/JAS.2023.123363
    [11]
    K. Zhao, C. Wen, Y. Song, and F. L. Lewis, “Adaptive uniform performance control of strict-feedback nonlinear systems with time-varying control gain,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 451–461, 2023. doi: 10.1109/JAS.2022.106064
    [12]
    D. Zhao and M. M. Polycarpou, “Fault accommodation for a class of nonlinear uncertain systems with event-triggered input,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 235–245, 2022. doi: 10.1109/JAS.2021.1004314
    [13]
    L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and S. I. Niculescu, “Recent developments on the stability of systems with aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309–335, 2017. doi: 10.1016/j.automatica.2016.10.023
    [14]
    J. Peralez, V. Andrieu, M. Nadri, and U. Serres, “Event-triggered output feedback stabilization via dynamic high-gain scaling,” IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2537–2549, 2018. doi: 10.1109/TAC.2018.2794413
    [15]
    V. Andrieu, M. Nadri, U. Serres, and J.-C. Vivalda, “Self-triggered continuous-discrete observer with updated sampling period,” Automatica, vol. 62, pp. 106–113, 2015. doi: 10.1016/j.automatica.2015.09.018
    [16]
    F. Mazenc, M. Malisoff, and S.-I. Niculescu, “Sampled-data estimator for nonlinear systems with uncertainties and arbitrarily fast rate of convergence,” Automatica, vol. 142, p. 110361, 2022.
    [17]
    H. Du, C. Qian, S. Li, and Z. Chu, “Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems,” Automatica, vol. 99, pp. 403–411, 2019. doi: 10.1016/j.automatica.2018.11.002
    [18]
    J. Mao, Z. Xiang, S. Huang, and J.-j. Xiong, “Sampled-data output feedback stabilization for a class of upper-triangular nonlinear systems with input delay,” Int. J. Robust and Nonlinear Control, vol. 32, no. 12, pp. 6939–6961, 2022. doi: 10.1002/rnc.6177
    [19]
    W. Liu and J. Huang, “Output regulation of linear systems via sampled-data control,” Automatica, vol. 113, p. 108684, 2020.
    [20]
    F. Mazenc and L. Praly, “Adding integrations, saturated controls, and stabilization for feedforward systems,” IEEE Trans. Autom. Control, vol. 41, no. 11, pp. 1559–1578, 1996. doi: 10.1109/9.543995
    [21]
    M.-S. Koo, H.-L. Choi, and J.-T. Lim, “Global regulation of a class of uncertain nonlinear systems by switching adaptive controller,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2822–2827, 2010. doi: 10.1109/TAC.2010.2069430
    [22]
    C. Qian and J. Li, “Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach,” Int. J. Robust and Nonlinear Control: IFAC-Affiliated J., vol. 16, no. 9, pp. 441–463, 2006.
    [23]
    P. Krishnamurthy and F. Khorrami, “A high-gain scaling technique for adaptive output feedback control of feedforward systems,” IEEE Trans. Autom. Control, vol. 49, no. 12, pp. 2286–2292, 2004. doi: 10.1109/TAC.2004.838476
    [24]
    M. Krstic, “Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1668–1682, 2004. doi: 10.1109/TAC.2004.835361
    [25]
    J. Sun and W. Lin, “A dynamic gain-based saturation control strategy for feedforward systems with long delays in state and input,” IEEE Trans. Autom. Control, vol. 66, no. 9, pp. 4357–4364, 2021. doi: 10.1109/TAC.2020.3030744
    [26]
    F. Mazenc, S. Mondie, and R. Francisco, “Global asymptotic stabilization of feedforward systems with delay in the input,” IEEE Trans. Autom. Control, vol. 49, no. 5, pp. 844–850, 2004. doi: 10.1109/TAC.2004.828313
    [27]
    M.-S. Koo and H.-L. Choi, “Non-predictor controller for feedforward and non-feedforward nonlinear systems with an unknown time-varying delay in the input,” Automatica, vol. 65, pp. 27–35, 2016. doi: 10.1016/j.automatica.2015.11.033
    [28]
    L. Chang, C. Zhang, X. Zhang, and X. Chen, “Decentralised regulation of nonlinear multi-agent systems with directed network topologies,” Int. J. Control, vol. 90, no. 11, pp. 2338–2348, 2016.
    [29]
    H. Li, X. Zhang, and S. Liu, “An improved dynamic gain method to global regulation of feedforward nonlinear systems,” IEEE Trans. Autom. Control, vol. 67, no. 6, pp. 2981–2988, 2022. doi: 10.1109/TAC.2021.3088787
    [30]
    Q. Liu, X. Zhang, and H. Li, “Global regulation for feedforward systems with both discrete delays and distributed delays,” Automatica, vol. 113, p. 108753, 2020.
    [31]
    H. Du, C. Qian, Y. He, and Y. Cheng, “Global sampled-data output feedback stabilisation of a class of upper-triangular systems with input delay,” IET Control Theory & Applications, vol. 7, no. 10, pp. 1437–1446, 2013.
    [32]
    H. Du, C. Qian, and S. Li, “Global stabilization of a class of uncertain upper-triangular systems under sampled-data control,” Int. J. Robust and Nonlinear Control, vol. 23, no. 6, pp. 620–637, 2013. doi: 10.1002/rnc.2780
    [33]
    X. Liu, W. Lin, C. Zhao, and Y. Hu, “Digital control of a family of time-delay feedforward systems with sparse sampling,” Systems & Control Letters, vol. 163, p. 105200, 2022.
    [34]
    B. Zhou and X. Yang, “Global stabilization of feedforward nonlinear time-delay systems by bounded controls,” Automatica, vol. 88, pp. 21–30, 2018. doi: 10.1016/j.automatica.2017.10.021
    [35]
    H. K. Khalil, Nonlinear Control. New York, USA: Pearson, 2015.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (49) PDF downloads(21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return