IEEE/CAA Journal of Automatica Sinica
Citation: | Fudong Ge, Yangquan Chen and Chunhai Kou, "Cyber-physical Systems as General Distributed Parameter Systems: Three Types of Fractional Order Models and Emerging Research Opportunities," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 4, pp. 353-357, 2015. |
[1] |
Lee E A. Cyber physical systems: design challenges. In: Proceedings of the 2008 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC). Orlando, FL: IEEE, 2008. 363-369
|
[2] |
Song Z, Chen Y Q, Sastry C R, Tas N C. Optimal Observation for Cyber-physical Systems: a Fisher-Information-Matrix-Based Approach. London: Springer, 2009.
|
[3] |
Tricaud C, Chen Y Q. Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems. London: Springer, 2012.
|
[4] |
El Jai A, Pritchard A J. Sensors and Controls in the Analysis of Distributed Systems. New York: Halsted Press, 1988.
|
[5] |
Podlubny I. Fractional Differential Equations, Vol. 198. New York: Academic Press, 1999.
|
[6] |
Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier Science, 2006.
|
[7] |
Klimek M. On Solutions of Linear Fractional Differential Equations of a Variational Type. Czestochowa: Publishing Office of Czestochowa University of Technology, 2009.
|
[8] |
Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, 1984, 51(2): 294-298
|
[9] |
Mandelbrot B B. The Fractal Geometry of Nature, Vol. 173. San Francisco: W. H. Freeman, 1983.
|
[10] |
Lv G Y, Duan J Q, He J C. Nonlocal elliptic equations involving measures. Journal of Mathematical Analysis and Applications, 2015, 432(2): 1106-1118
|
[11] |
Lv G Y, Duan J Q. Martingale and weak solutions for a stochastic nonlocal Burgers equation on bounded intervals. arXiv preprint arXiv: 1410.7691 [math. P R] 28 Oct. 2014.
|
[12] |
He J C, Duan J Q, Gao H J. Global solutions for a nonlocal Ginzberg-Landau equation and a nonlocal Fokker-Plank equation. arXiv preprint arXiv: 1312. 5836 [math. A P] 20 Dec. 2013.
|
[13] |
Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques, 2012, 136(5): 521-573
|
[14] |
Du Q, Gunzburger M, Lehoucq R B, Zhou K. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences, 2013, 23(3): 493-540
|
[15] |
Applebaum D. Lévy Processes and Stochastic Calculus (Second edition). Cambridge: Cambridge University Press, 2009.
|
[16] |
Du Q, Gunzburger M, Lehoucq R B, Zhou K. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Review, 2012, 54(4): 667-696
|
[17] |
Choi W, Kim S, Lee K A. Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian. Journal of Functional Analysis, 2014, 266(11): 6531-6598
|
[18] |
Barrios B, Colorado E, De Pablo A, Sánchez U. On some critical problems for the fractional Laplacian operator. Journal of Differential Equations, 2012, 252(11): 6133-6162
|
[19] |
Micu S, Zuazua E. On the controllability of a fractional order parabolic equation. SIAM Journal on Control and Optimization, 2006, 44(6): 1950-1972
|
[20] |
Fattorini H O, Russell D L. Exact controllability theorems for linear parabolic equations in one space dimension. Archive for Rational Mechanics and Analysis, 1971, 43(4): 272-292
|
[21] |
Kwaśnicki M. Eigenvalues of the fractional Laplace operator in the interval. Journal of Functional Analysis, 2012, 262(5): 2379-2402
|
[22] |
Ros-Oton X, Serra J. The dirichlet problem for the fractional Laplacian: regularity up to the boundary. Journal de Mathématiques Pures et Appliquées, 2014, 101(3): 275-302
|
[23] |
Gorenflo R, Mainardi F. Random walk models for space-fractional diffusion processes. Fractional Calculus and Applied Analysis, 1998, 1(2): 167-191
|
[24] |
Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. New York: Gordon and Breach Science Publishers, 1993.
|
[25] |
Landkof N S, Doohovskoy A P. Foundations of Modern Potential Theory (Grundlehren der mathematischenWissenschaften). New York: Springer, 1972.
|
[26] |
Luchko Y, Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathematica Vietnamica, 1999, 24(2): 207-233
|
[27] |
Jiang H, Liu F, Turner I, Burrage K. Analytical solutions for the multiterm time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. Journal of Mathematical Analysis and Applications, 2012, 389(2): 1117-1127
|
[28] |
Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling, 2010, 34(1): 200-218
|
[29] |
Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation. Journal of Computational and Applied Mathematics, 2004, 166(1): 209-219
|
[30] |
Ashyralyev A. A note on fractional derivatives and fractional powers of operators. Journal of Mathematical Analysis and Applications, 2009, 357(1): 232-236
|
[31] |
Komatsu H. Fractional powers of operators. Pacific Journal of Mathematics, 1966, 19(2): 285-346
|
[32] |
Komatsu H. Fractional powers of operators, II. Interpolation spaces. Pacific Journal of Mathematics, 1967, 21(1): 89-111
|
[33] |
Komatsu H. Fractional powers of operators, III. Negative powers. Journal of the Mathematical Society of Japan, 1969, 21(2): 205-220
|
[34] |
Carracedo C M, Alix M S. The Theory of Fractional Powers of Operators. Amsterdam: Elsevier, 2001.
|
[35] |
Balakrishnan A V. Fractional powers of closed operators and the semigroups generated by them. Pacific Journal of Mathematics, 1960, 10(2): 419-439
|
[36] |
Umarov S. Introduction to Fractional and Pseudo-differential Equations with Singular Symbols, Vol. 41. Switzerland: Springer, 2015.
|
[37] |
Hahn M, Kobayashi K, Umarov S. SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations. Journal of Theoretical Probability, 2012, 25(1): 262-279
|
[38] |
Umarov S. Algebra of pseudo-differential operators with variable analytic symbols and propriety of the corresponding equations. Differ. Equ., 1991, 27(6): 753-759
|
[39] |
Hahn M, Umarov S. Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. Fractional Calculus and Applied Analysis, 2011, 14(1): 56-79
|
[40] |
Afifi L, Chafia A, El Jai A. Regionally efficient and strategic actuators. International Journal of Systems Science, 2002, 33(1): 1-12
|
[41] |
Ge F D, Chen Y Q, Kou C H. Regional controllability of anomalous diffusion generated by the time fractional diffusion equations. In: ASME IDETC/CIE 2015, Boston, Aug. 2-5, 2015, DETC2015-46697. See also: arXiv preprint arXiv: 1508. 00047
|
[42] |
Chen Y Q, Moore K L, Song Z. Diffusion boundary determination and zone control via mobile actuator-sensor networks (MAS-net): challenges and opportunities. In: Proc. SPIE 5421, Intelligent Computing: Theory and Applications II. Orlando, FL: SPIE, 2004. 102-113
|