Citation: | Y. Huang, G.-P. Liu, Y. Yu, and W. Hu, “Constrained networked predictive control for nonlinear systems using a high-order fully actuated system approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 0, pp. 1–3, Jul. 2024. |
[1] |
G.-R. Duan, “Robust stabilization of time-varying nonlinear systems with time-varying delays: A fully actuated system approach,” IEEE Trans. Cybern., vol. 53, no. 12, pp. 7455–7468, 2023. doi: 10.1109/TCYB.2022.3217317
|
[2] |
D. Ding, Z. Wang, and Q.-L. Han, “A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1792–1799, 2020. doi: 10.1109/TAC.2019.2934389
|
[3] |
M. Khadem, J. O’Neill, Z. Mitros, L. da Cruz, and C. Bergeles, “Autonomous steering of concentric tube robots via nonlinear model predictive control,” IEEE Trans. Robot., vol. 36, no. 5, pp. 1595–1602, 2020. doi: 10.1109/TRO.2020.2991651
|
[4] |
R. Wang, H. Li, B. Liang, Y. Shi, and D. Xu, “Policy learning for nonlinear model predictive control with application to USV,” IEEE Trans. Ind. Electron., vol. 71, no. 4, pp. 4089–4097, 2024. doi: 10.1109/TIE.2023.3274869
|
[5] |
D.-W. Zhang, G.-P. Liu, and L. Cao, “Predictive control of discrete-time high-order fully actuated systems with application to air-bearing spacecraft simulator,” J. Frankl. Inst., vol. 360, no. 8, pp. 5910–5927, 2023. doi: 10.1016/j.jfranklin.2023.04.003
|
[6] |
G. P. Incremona, M. Rubagotti, M. Tanelli, and A. Ferrara, “A general framework for switched and variable gain higher order sliding mode control,” IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1718–1724, 2021. doi: 10.1109/TAC.2020.2996423
|
[7] |
J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Linear tracking mpc for nonlinear systems — Part I: The model-based case,” IEEE Transactions on Autom. Control, vol. 67, no. 9, pp. 4390–4405, 2022. doi: 10.1109/TAC.2022.3166872
|
[8] |
Z.-H. Pang, B. Ma, G.-P. Liu, and Q.-L. Han, “Data-driven adaptive control: An incremental triangular dynamic linearization approach,” IEEE Trans. Circuits Syst. Ⅱ, Exp. Briefs, vol. 69, no. 12, pp. 4949–4953, 2022. doi: 10.1109/TCSII.2022.3181232
|
[9] |
H. Tan, Y. Wang, M. Wu, Z. Huang, and Z. Miao, “Distributed group coordination of multiagent systems in cloud computing systems using a model-free adaptive predictive control strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8, pp. 3461–3473, 2022. doi: 10.1109/TNNLS.2021.3053016
|
[10] |
Y . H u a n g , G . - P . L i u , Y . Y u , a n d W . H u , “ D a t a - d r i v e n d i s t r i b u t e d p r e d i c t i v e t r a c k i n g c o n t r o l f o r h e t e r o g e n e o u s n o n l i n e a r m u l t i - a g e n t s y s t e m s w i t h c o m m u n i c a t i o n d e l a y s , ” < i > I E E E T r a n s . A u t o m . C o n t r o l < / i > , p p . 1 – 8 , 2 0 2 4 . D O I :
|
[11] |
H. Tan, Y. Wang, H. Zhong, M. Wu, and Y. Jiang, “Coordination of low-power nonlinear multi-agent systems using cloud computing and a data-driven hybrid predictive control method,” Control Eng. Pract., vol. 108, p. 104722, 2021. doi: 10.1016/j.conengprac.2020.104722
|
[12] |
G. Duan, “High-order fully actuated system approaches: Part I. Models and basic procedure,” Int. J. Syst. Sci., vol. 52, no. 2, pp. 422–435, 2021. doi: 10.1080/00207721.2020.1829167
|
[13] |
G.-P. Liu, “Predictive control of high-order fully actuated nonlinear systems with time-varying delays,” J. Syst. Sci. Complex., vol. 35, no. 2, pp. 457–470, 2022. doi: 10.1007/s11424-022-1467-z
|
[14] |
S. Raković, E. Kerrigan, K. Kouramas, and D. Mayne, “Invariant approximations of robustly positively invariant sets for constrained linear discrete-time systems subject to bounded disturbances”. University of Cambridge, Department of Engineering Cambridge, Cambridge, UK, 2004.
|
[15] |
S. Xiong and Z. Hou, “Model-free adaptive control for unknown mimo nonaffine nonlinear discrete-time systems with experimental validation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 4, pp. 1727–1739, 2022. doi: 10.1109/TNNLS.2020.3043711
|