Citation: | J. Li, Z. Wang, J. Hu, H. Dong, and H. Liu, “Cubature Kalman fusion filtering under amplify-and-forward relays with randomly varying channel parameters,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 0, pp. 1–13, Jun. 2024. |
[1] |
R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked fusion estimation with multiple uncertainties and time-correlated channel noise,” Information Fusion, vol. 54, pp. 161–171, 2020. doi: 10.1016/j.inffus.2019.07.008
|
[2] |
H. Geng, Z. Wang, Y. Chen, F. E. Alsaadi, and Y. Cheng, “Multi-sensor filtering fusion with parametric uncertainties and measurement censoring: Monotonicity and boundedness,” IEEE Trans. Signal Processing, vol. 69, pp. 5875–5890, 2021. doi: 10.1109/TSP.2021.3118538
|
[3] |
W. Li and F. Yang, “Information fusion over network dynamics with unknown correlations: An overview,” Int. J. Network Dynamics and Intelligence, vol. 2, no. 2, p. 100003, 2023.
|
[4] |
T. Tian, S. Sun, and N. Li, “Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises,” Information Fusion, vol. 27, pp. 126–137, 2016. doi: 10.1016/j.inffus.2015.06.001
|
[5] |
X. Wang, A. K. Gostar, T. Rathnayake, B. Xu, A. Bab-Hadiashar, and R. Hoseinnezhad, “Centralized multiple-view sensor fusion using labeled multi-Bernoulli filters,” Signal Processing, vol. 150, pp. 75–84, 2018. doi: 10.1016/j.sigpro.2018.04.010
|
[6] |
Y. Jin, X. Ma, X. Meng, and Y. Chen, “Distributed fusion filtering for cyber-physical systems under round-robin protocol: A mixed H2/H∞ framework,” Int. J. Systems Science, vol. 54, no. 8, pp. 1661–1675, 2023. doi: 10.1080/00207721.2023.2208130
|
[7] |
M. Xie, D. Ding, H. Dong, Q.-L. Han, and G. Wei, “Reliable fusion estimation over sensor networks with outliers and energy constraints,” Int. J. Robust and Nonlinear Control, vol. 29, no. 17, pp. 5913–5929, 2019. doi: 10.1002/rnc.4706
|
[8] |
R. Caballero-Águila and J. Linares-Pérez, “Distributed fusion filtering for uncertain systems with coupled noises, random delays and packet loss prediction compensation,” Int. J. Systems Science, vol. 54, no. 2, pp. 371–390, 2023. doi: 10.1080/00207721.2022.2122905
|
[9] |
B. Chen, G. Hu, D. W. C. Ho, W.-A. Zhang, and L. Yu, “Distributed robust fusion estimation with application to state monitoring systems,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 47, no. 11, pp. 2994–3005, 2017. doi: 10.1109/TSMC.2016.2558103
|
[10] |
Z. Xing and Y. Xia, “Distributed federated Kalman filter fusion over multi-sensor unreliable networked systems,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 63, no. 10, pp. 1714–1725, 2016. doi: 10.1109/TCSI.2016.2587728
|
[11] |
S. Chen and D. W. C. Ho, “Information-based distributed extended Kalman filter with dynamic quantization via communication channels,” Neurocomputing, vol. 469, pp. 251–260, 2022. doi: 10.1016/j.neucom.2021.10.066
|
[12] |
H. Gao, Y. Li, L. Yu, and H. Yu, “Collaborative-prediction-based recursive filtering for nonlinear systems with sensor saturation under duty cycle scheduling,” Systems Science & Control Engineering, vol. 11, no. 1, p. 2247007, 2023.
|
[13] |
W. Li, Y. Jia, and J. Du, “Variance-constrained state estimation for nonlinearly coupled complex networks,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 818–824, 2018. doi: 10.1109/TCYB.2017.2653242
|
[14] |
S. Feng, X. Li, S. Zhang, Z. Jian, H. Duan, and Z. Wang, “A review: State estimation based on hybrid models of Kalman filter and neural network,” Systems Science & Control Engineering, vol. 11, no. 1, p. 2173682, 2023.
|
[15] |
C. Li, Z. Wang, W. Song, S. Zhao, J. Wang, and J. Shan, “Resilient unscented Kalman filtering fusion with dynamic event-triggered scheme: Applications to multiple unmanned aerial vehicles,” IEEE Trans. Control Systems Technology, vol. 31, no. 1, pp. 370–381, 2023. doi: 10.1109/TCST.2022.3180942
|
[16] |
K. Xiong, H. Zhang, and C. Chan, “Performance evaluation of UKF-based nonlinear filtering,” Automatica, vol. 42, no. 2, pp. 261–270, 2006. doi: 10.1016/j.automatica.2005.10.004
|
[17] |
S. Li, Y. Hu, L. Zheng, Z. Li, X. Chen, T. Fernando, H. H. C. Iu, Q. Wang, and X. Liu, “Stochastic event-triggered cubature Kalman filter for power system dynamic state estimation,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 66, no. 9, pp. 1552–1556, 2019.
|
[18] |
Y.-W. Lv and G.-H. Yang, “An adaptive cubature Kalman filter for nonlinear systems against randomly occurring injection attacks,” Applied Mathematics and Computation, vol. 418, p. 126834, 2022. doi: 10.1016/j.amc.2021.126834
|
[19] |
Y.-W. Lv and G.-H. Yang, “Centralized and distributed adaptive cubature information filters for multi-sensor systems with unknown probability of measurement loss,” Information Sciences, vol. 630, pp. 173–189, 2023. doi: 10.1016/j.ins.2023.02.035
|
[20] |
Y. Ju, D. Liu, D. Ding, and G. Wei, “Distributed cubature Kalman filtering for nonlinear systems with stochastic communication protocol,” Asian J. Control, vol. 24, no. 6, pp. 3566–3579, 2022. doi: 10.1002/asjc.2755
|
[21] |
M. Kooshkbaghi and H. J. Marquez, “Event-triggered discrete-time cubature Kalman filter for nonlinear dynamical systems with packet dropout,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2278–2285, 2020. doi: 10.1109/TAC.2019.2945286
|
[22] |
D. Ciuonzo, A. Aubry, and V. Carotenuto, “Rician MIMO channel-aware and jamming-aware decision fusion,” IEEE Trans. Signal Processing, vol. 65, no. 15, pp. 3866–3880, 2017. doi: 10.1109/TSP.2017.2686375
|
[23] |
X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1234–1251, 2023. doi: 10.1109/JAS.2022.105845
|
[24] |
X. Ge, Q.-L. Han, X. Zhang, L. Ding, and F. Yang, “Distributed event-triggered estimation over sensor networks: A survey,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1306–1320, 2020. doi: 10.1109/TCYB.2019.2917179
|
[25] |
F. Han, J. Liu, J. Li, J. Song, M. Wang, and Y. Zhang, “Consensus control for multi-rate multi-agent systems with fading measurements: The dynamic event-triggered case,” Systems Science & Control Engineering, vol. 11, no. 1, p. 2158959, 2023.
|
[26] |
Y. Wang, H.-J. Liu, and H.-L. Tan, “An overview of filtering for sampled-data systems under communication constraints,” Int. J. Network Dynamics and Intelligence, vol. 2, no. 3, p. 100011, 2023.
|
[27] |
Y. Xu, R. Lu, H. Peng, K. Peng, and A. Xue, “Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements,” IEEE Trans. Neural Networks and Learning Systems, vol. 28, no. 2, pp. 268–277, 2015.
|
[28] |
W. Chen, D. Ding, H. Dong, and G. Wei, “Distributed resilient filtering for power systems subject to denial-of-service attacks,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 49, no. 8, pp. 1688–1697, 2019. doi: 10.1109/TSMC.2019.2905253
|
[29] |
D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 51, no. 1, pp. 176–190, 2021. doi: 10.1109/TSMC.2020.3041121
|
[30] |
Y. Shen and S. Sun, “Distributed recursive filtering for multi-rate uniform sampling systems with packet losses in sensor networks,” Int. J. Systems Science, vol. 54, no. 8, pp. 1729–1745, 2023. doi: 10.1080/00207721.2023.2209887
|
[31] |
Y.-A. Wang, B. Shen, L. Zou, and Q.-L. Han, “A survey on recent advances in distributed filtering over sensor networks subject to communication constraints,” Int. J. Network Dynamics and Intelligence, vol. 2, no. 2, p. 100007, 2023.
|
[32] |
E. Antonio-Rodriguez, S. Werner, R. López-Valcarce, and R. Wichman, “MMSE filter design for full-duplex filter-and-forward MIMO relays under limited dynamic range,” Signal Processing, vol. 156, pp. 208–219, 2019. doi: 10.1016/j.sigpro.2018.11.001
|
[33] |
S. Kiani, S. ShahbazPanahi, M. Dong, and G. Boudreau, “Power-optimal distributed beamforming for multi-carrier asynchronous bidirectional relay networks,” IEEE Trans. Signal and Infor. Processing Over Networks, vol. 7, pp. 114–129, 2021. doi: 10.1109/TSIPN.2020.3044962
|
[34] |
M. A. Sadr and B. Champagne, “Joint channel estimation and robust beamforming design for AF relaying using IMM Kalman filters,” IEEE Trans. Vehicular Technology, vol. 72, no. 2, pp. 1775–1790, 2023. doi: 10.1109/TVT.2022.3207410
|
[35] |
T. Zhang, G. Liu, H. Zhang, W. Kang, G. K. Karagiannidis, and A. Nallanathan, “Energy-efficient resource allocation and trajectory design for UAV relaying systems,” IEEE Trans. Communi., vol. 68, no. 10, pp. 6483–6498, 2020. doi: 10.1109/TCOMM.2020.3009153
|
[36] |
S. Huang, H. Chen, J. Cai, and F. Zhao, “Energy efficiency and spectral-efficiency tradeoff in amplify-and-forward relay networks,” IEEE Trans. Vehicular Technology, vol. 62, no. 9, pp. 4366–4378, 2013. doi: 10.1109/TVT.2013.2269695
|
[37] |
H. Tan, B. Shen, Q. Li, and W. Qian, “Recursive filtering for nonlinear systems with self-interferences over full-duplex relay networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2037–2040, 2022. doi: 10.1109/JAS.2022.105965
|
[38] |
O. Shmuel, A. Cohen, and O. Gurewitz, “Compute-and-forward in large relaying systems: Limitations and asymptotically optimal scheduling,” IEEE Trans. Information Theory, vol. 67, no. 9, pp. 6243–6265, 2021. doi: 10.1109/TIT.2021.3093454
|
[39] |
S. M. J. A. Tabatabaee, M. Rajabzadeh, and M. Towliat, “A novel low-complexity GFDM relay communication system: Relay selection and filter-and-forward,” IEEE Trans. Signal Processing, vol. 69, pp. 5147–5158, 2021. doi: 10.1109/TSP.2021.3108679
|
[40] |
A. Jee, K. Agrawal, and S. Prakriya, “A coordinated direct AF/DF relay-aided NOMA framework for low outage,” IEEE Trans. Communi., vol. 70, no. 3, pp. 1559–1579, 2022. doi: 10.1109/TCOMM.2021.3126632
|
[41] |
R. Senanayake, S. Atapattu, J. S. Evans, and P. J. Smith, “Decentralized relay selection in multi-user multihop decode-and-forward relay networks,” IEEE Trans. Wireless Communications, vol. 17, no. 5, pp. 3313–3326, 2018. doi: 10.1109/TWC.2018.2809748
|
[42] |
F.-S. Tseng, C.-T. Lin, J.-Y. Chen, and K.-Y. Chen, “Finite-order source and relay filtering design for wideband full-duplex amplify-and-forward relaying networks,” IEEE Trans. Communi., vol. 68, no. 12, pp. 7395–7409, 2020. doi: 10.1109/TCOMM.2020.3023929
|
[43] |
Y. Ding, L. Gong, M. Zhang, C. Li, and Z. Qin, “A multi-path adaptive fusion network for multimodal brain tumor segmentation,” Neurocomputing, vol. 412, pp. 19–30, 2020. doi: 10.1016/j.neucom.2020.06.078
|
[44] |
A. S. Leong and D. E. Quevedo, “Kalman filtering with relays over wireless fading channels,” IEEE Trans. Autom. Control, vol. 61, no. 6, pp. 1643–1648, 2016. doi: 10.1109/TAC.2015.2478129
|
[45] |
Y. Liu, Z. Wang, C. Liu, M. Coombes, and W.-H. Chen, “Auxiliary particle filtering over sensor networks under protocols of amplify-andforward and decode-and-forward relays,” IEEE Trans. Signal and Inform. Processing over Networks, vol. 8, pp. 883–893, 2022. doi: 10.1109/TSIPN.2022.3212318
|
[46] |
Y. Chen, X. Meng, Z. Wang, and H. Dong, “Event-triggered recursive state estimation for stochastic complex dynamical networks under hybrid attacks,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 3, pp. 1465–1477, 2023. doi: 10.1109/TNNLS.2021.3105409
|
[47] |
K. Xiong, C. Wei, and L. Liu, “Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties,” IEEE Trans. Systems, Man, and Cybern.——Part A: Systems and Humans, vol. 40, no. 2, pp. 399–405, 2010. doi: 10.1109/TSMCA.2009.2034836
|
[48] |
K. Reif, F. Sonnemann, and R. Unbehauen, “An EKF-based nonlinear observer with a prescribed degree of stability,” Automatica, vol. 34, no. 9, pp. 1119–1123, 1998. doi: 10.1016/S0005-1098(98)00053-3
|