A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 2 Issue 2
Apr.  2015

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Delong Hou, Qing Wang and Chaoyang Dong, "Output Feedback Dynamic Surface Controller Design for Airbreathing Hypersonic Flight Vehicle," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 2, pp. 186-197, 2015.
Citation: Delong Hou, Qing Wang and Chaoyang Dong, "Output Feedback Dynamic Surface Controller Design for Airbreathing Hypersonic Flight Vehicle," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 2, pp. 186-197, 2015.

Output Feedback Dynamic Surface Controller Design for Airbreathing Hypersonic Flight Vehicle

Funds:

This work was supported by Natural National Science Foundation of China (61273083, 61374012).

  • This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and altitude in the presence of immeasurable states, uncertainties and varying flight conditions. A novel reduced order fuzzy observer is proposed to estimate the immeasurable states. Based on the information of observer and the measured states, a new robust output feedback controller combining dynamic surface theory and fuzzy logic system is proposed for airbreathing hypersonic vehicle. The closedloop system is proved to be semi-globally uniformly ultimately bounded (SUUB), and the tracking error can be made small enough by choosing proper gains of the controller, filter and observer. Simulation results from the full nonlinear vehicle model illustrate the effectiveness and good performance of the proposed control scheme.

     

  • [1]
    Chavez F R, Schmidt D K. Uncertainty modeling for multivariablecontrol robustness analysis of elastic high-speed vehicles. Journal of Guidance, Control, and Dynamics, 1999, 22(1):87-95
    [2]
    Zong Q, Ji Y H, Zeng F L, Liu H L. Output feedback backstepping control for a generic hypersonic vehicle via small gain theorem. Aerospace Science and Technology, 2012, 23(1):409-417
    [3]
    Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. Journal of Spacecraft and Rockets, 2007, 44(2):374-387
    [4]
    Sun Chang-Yin, Mu Chao-Xu, Yu Yao. Some control problems for near space hypersonic vehicles. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese)
    [5]
    Bao Wei-Min. Present situation and development tendency of aerospace control techniques. Acta Automatica Sinica, 2013, 39(6):609-702(in Chinese)
    [6]
    Dickeson J J, Rodriguez A A, Sridharam S, Benavides J, Soloway D. Decentralized control of an air-breathing scramjet-powered hypersonic vehicle. In:Proceedings of the 2009 AIAA Guidance, Navigation and Control Conference. Chicago, IL:AIAA, 2009. AIAA-2009-6281
    [7]
    Groves K P, Sigthorsson D O, Serrani A, Yurkovich S, Bolender M A, Doman D B. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. In:Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference. San Francisco, CA:AIAA, 2005. AIAA-2005-6144
    [8]
    Lind R, Buffington J, Sparks A. Multi-loop aeroservoelastic control of a hypersonic vehicle. In:Proceedings of the 1999 AIAA Guidance, Navigation, and Control Conference. Portland, OR:AIAA, 1999. AIAA-99-4123
    [9]
    Rick L. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. Journal of Guidance, Control, and Dynamics, 2002, 25(4):733-739
    [10]
    Wilcox Z D, Mackunis W, Bhat S, Lind R, Dixon W E. Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1213-1224
    [11]
    Hu X, Wu L, Hu C, Gao H. Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle. IET Control Theory and Applications, 2012, 69(4):1238-1249
    [12]
    Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. Journal of Guidance, Control, and Dynamics, 2000, 23(4):577-585
    [13]
    Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic. Journal of Guidance, Control, and Dynamics, 2004, 27(5):829-838
    [14]
    Hu X X, Wu L G, Hu C H, Gao H J. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle. Journal of the Franklin Institute, 2012, 349(2):559-577
    [15]
    Gao G, Wang J Z. Reference command tracking control for an airbreathing hypersonic vehicle with parametric uncertainties. Journal of The Franklin Institute, 2013, 350(5):1155-1188
    [16]
    Fiorentini L, Serrani A, Bolender M, Doman D B. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-416
    [17]
    Bialy B J, Klotz J, Curtis J W, Dixon W E. An adaptive backstepping controller for a hypersonic air-breathing missile. In:Proceedings of the 2012 AIAA Guidance, Navigation and Control Conference. Minneapolis, MN:AIAA, 2012. AIAA-2012-4468
    [18]
    David O S, Pete J, Andrea S. Robust linear output feedback control of an airbreathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1052-1066
    [19]
    Zhang X, Lin Y. Adaptive output feedback tracking for a class of nonlinear systems. Automatica, 2012, 48(9):2372-2376
    [20]
    Fan H J, Han L X., Wen C Y, Xu L. Decentralized adaptive outputfeedback controller design for stochastic nonlinear interconnected systems. Automatica, 2012, 48(11):2866-2873
    [21]
    Jiang Zhong-Ping, Huang Jie. Stabilization and output regulation by nonlinear feedback:a brief overview. Acta Automatica Sinica, 2013, 39(9):1389-1401(in Chinese)
    [22]
    Tong S C, Li Y M, Feng G, Li T S. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2011, 41(12):1124-1135
    [23]
    Parker J T, Serrani A, Yurkovich S, Bolender M A, Doman D B. Controloriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869
    [24]
    Fiorentini L. Nonlinear Adaptive Controller Design for Air-Breathing Hypersonic Vehicles[Ph. D. dissertation], The Ohio State University, USA, 2010.
    [25]
    Tong S C, Li Y M, Feng G, Li T S. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of non-linear systems with unknown time delays. IET Control Theory and Applications, 2011, 12(5):1426-1438
    [26]
    Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906
    [27]
    Xia Y Q, Zhu Z, Fu M Y, Wang S. Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Transactions on Industrial Electronics, 2011, 58(2):647-659
    [28]
    Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47(3):452-465
    [29]
    Sun H F, Yang Z L, Zeng J P. New tracking-control strategy for airbreathing hypersonic vehicles. Journal of Guidance, Control, and Dynamics, 2013, 36(3):846-859
    [30]
    Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and application. Mathematics of Control, Signals, and Systems, 1994, 7(2):95-120
  • Related Articles

    [1]Chenxi Gu, Xinli Wang, Kang Li, Xiaohong Yin, Shaoyuan Li, Lei Wang. Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties[J]. IEEE/CAA Journal of Automatica Sinica, 2025, 12(3): 596-605. doi: 10.1109/JAS.2024.124974
    [2]Fazhi Song, Ning Cui, Shuaiqi Chen, Kai Zhang, Yang Liu, Xinkai Chen, Jiubin Tan. Beyond Performance of Learning Control Subject to Uncertainties and Noise: A Frequency-Domain Approach Applied to Wafer Stages[J]. IEEE/CAA Journal of Automatica Sinica, 2025, 12(1): 198-214. doi: 10.1109/JAS.2024.124968
    [3]Wei Ren, Zhuo-Rui Pan, Weiguo Xia, Xi-Ming Sun. Hierarchical Controller Synthesis Under Linear Temporal Logic Specifications Using Dynamic Quantization[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(10): 2082-2098. doi: 10.1109/JAS.2024.124473
    [4]Zheng Wu, Yiyun Zhao, Fanbiao Li, Tao Yang, Yang Shi, Weihua Gui. Asynchronous Learning-Based Output Feedback Sliding Mode Control for Semi-Markov Jump Systems: A Descriptor Approach[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(6): 1358-1369. doi: 10.1109/JAS.2024.124416
    [5]Yuhan Zhang, Zidong Wang, Lei Zou, Yun Chen, Guoping Lu. Ultimately Bounded Output Feedback Control for Networked Nonlinear Systems With Unreliable Communication Channel: A Buffer-Aided Strategy[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(7): 1566-1578. doi: 10.1109/JAS.2024.124314
    [6]Li-Ying Hao, Gege Dong, Tieshan Li, Zhouhua Peng. Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(4): 956-964. doi: 10.1109/JAS.2023.123675
    [7]Shengnan Gao, Zhouhua Peng, Haoliang Wang, Lu Liu, Dan Wang. Long Duration Coverage Control of Multiple Robotic Surface Vehicles Under Battery Energy Constraints[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(7): 1695-1698. doi: 10.1109/JAS.2023.123438
    [8]Yang Yuan, Haibin Duan, Zhigang Zeng. Prescribed Performance Evolution Control for Quadrotor Autonomous Shipboard Landing[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(5): 1151-1162. doi: 10.1109/JAS.2024.124254
    [9]Oscar Castillo, Fevrier Valdez, Patricia Melin, Weiping Ding. A Survey on Type-3 Fuzzy Logic Systems and Their Control Applications[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(8): 1744-1756. doi: 10.1109/JAS.2024.124530
    [10]Xiongbo Wan, Chaoling Zhang, Fan Wei, Chuan-Ke Zhang, Min Wu. Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(3): 723-733. doi: 10.1109/JAS.2023.123957
    [11]Haoxiang Ma, Mou Chen, Qingxian Wu. Disturbance Observer-Based Safe Tracking Control for Unmanned Helicopters With Partial State Constraints and Disturbances[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(11): 2056-2069. doi: 10.1109/JAS.2022.105938
    [12]Jiaxin Zhang, Kewen Li, Yongming Li. Output-Feedback Based Simplified Optimized Backstepping Control for Strict-Feedback Systems with Input and State Constraints[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(6): 1119-1132. doi: 10.1109/JAS.2021.1004018
    [13]Cuihong Wang, Huanhuan Li, YangQuan Chen. H Output Feedback Control of Linear Time-invariant Fractional-order Systems over Finite Frequency Range[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 304-310.
    [14]Shanwei Su. Output-feedback Dynamic Surface Control for a Class of Nonlinear Non-minimum Phase Systems[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(1): 96-104.
    [15]Yan Song, Haifeng Lou, Shuai Liu. Distributed Model Predictive Control with Actuator Saturation for Markovian Jump Linear System[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(4): 374-381.
    [16]Jingmei Zhang, Changyin Sun, Ruimin Zhang, Chengshan Qian. Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 94-101.
    [17]Chaoxu Mu, Qun Zong, Bailing Tian, Wei Xu. Continuous Sliding Mode Controller with Disturbance Observer for Hypersonic Vehicles[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 45-55.
    [18]Cheng Peng, Yue Bai, Xun Gong, Qingjia Gao, Changjun Zhao, Yantao Tian. Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 56-64.
    [19]Qiming Zhao, Hao Xu, Sarangapani Jagannathan. Near Optimal Output Feedback Control of Nonlinear Discrete-time Systems Based on Reinforcement Neural Network Learning[J]. IEEE/CAA Journal of Automatica Sinica, 2014, 1(4): 372-384.
    [20]Ruimin Zhang, Lu Dong, Changyin Sun. Adaptive Nonsingular Terminal Sliding Mode Control Design for Near Space Hypersonic Vehicles[J]. IEEE/CAA Journal of Automatica Sinica, 2014, 1(2): 155-161.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1179) PDF downloads(10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return