Citation: | X. Yu, “Switching in sliding mode control: A spatio-temporal perspective,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 6, pp. 1–9, Jun. 2025. doi: 10.1109/JAS.2025.125423 |
[1] |
V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Control, vol. 22, no. 2, pp. 212–222, Apr. 1977. doi: 10.1109/TAC.1977.1101446
|
[2] |
V. I. Utkin, Sliding Modes in Control and Optimization. Berlin, Heidelberg, Germany: Springer, 1992.
|
[3] |
Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and Observation. New York, USA: Birkhäuser, 2014.
|
[4] |
X. Yu, B. Wang, and X. Li, “Computer-controlled variable structure systems: The state-of-the-art,” IEEE Trans. Industr. Inform., vol. 8, no. 2, pp. 197–205, May 2012. doi: 10.1109/TII.2011.2178249
|
[5] |
B. Draženović, “The invariance conditions in variable structure systems,” Automatica, vol. 5, no. 3, pp. 287–295, May 1969. doi: 10.1016/0005-1098(69)90071-5
|
[6] |
A. K. Behera, B. Bandyopadhyay, M. Cucuzzella, A. Ferrara, and X. Yu, “A survey on event-triggered sliding mode control,” IEEE J. Emerging Sel. Top. Industr. Electron., vol. 2, no. 3, pp. 206–217, Jul. 2021. doi: 10.1109/JESTIE.2021.3087938
|
[7] |
R. B. Potts and X. Yu, “Discrete variable structure system with pseudo-sliding mode,” ANZIAM J., vol. 32, no. 4, pp. 365–376, Apr. 1991.
|
[8] |
X. Yu, Y. Feng, and Z. Man, “Terminal sliding mode control – an overview,” IEEE Open J. Industr. Electron. Soc., vol. 2, pp. 36–52, 2020.
|
[9] |
Y. Liu, H. Li, R. Lu, Z. Zuo, X. Li, and R. Lu, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, Dec. 2022. doi: 10.1109/JAS.2022.105413
|
[10] |
L. Fridman and A. Levant, “Higher-order sliding modes,” in Sliding Mode Control in Engineering. W. Perruquetti and J.-P. Barbot, Eds. Boca Raton, USA: CRC Press, 2002, pp. 53–74.
|
[11] |
V. Utkin, A. Poznyak, Y. Orlov, and A. Polyakov, “Conventional and high order sliding mode control,” J. Franklin Inst., vol. 357, no. 15, pp. 10244–10261, Oct. 2020. doi: 10.1016/j.jfranklin.2020.06.018
|
[12] |
A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Automat. Control, vol. 57, no. 8, pp. 2106–2110, Aug. 2012. doi: 10.1109/TAC.2011.2179869
|
[13] |
K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer's guide to sliding mode control,” IEEE Trans. Control Syst. Technol., vol. 7, no. 3, pp. 328–342, May 1999. doi: 10.1109/87.761053
|
[14] |
X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, and D. Yue, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911651
|
[15] |
D. Liberzon, Switching in Systems and Control. Boston, USA: Birkhäuse, 2003.
|
[16] |
C. T. Lin, and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Upper Saddle River, USA: Prentice-Hall, Inc., 1996.
|
[17] |
L. Wu, J. Lu, S. Vazquez, and S. K. Mazumder, “Sliding mode control in power converters and drives: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 392–406, Mar. 2022. doi: 10.1109/JAS.2021.1004380
|
[18] |
Z. Guan, D. J. Hill, and J. Yao, “A hybrid impulsive and switching control strategy for synchronization of nonlinear systems and application to Chua's chaotic circuit,” Int. J. Bifurcat. Chaos, vol. 16, no. 1, pp. 229–238, Jan. 2006. doi: 10.1142/S0218127406014769
|
[19] |
L. Yu, J.-P. Barbot, D. Benmerzouk, D. Boutat, T. Floquet, and G. Zheng, “Discussion about sliding mode algorithms, zeno phenomena and observability,” in Sliding Modes After the First Decade of the 21st Century: State of the Art. L. Fridman, J. Moreno, and R. Iriarte, Eds. Berlin, Heidelberg, Germany: Springer, 2011, pp. 199–219.
|
[20] |
J. C. Butcher, “Runge-Kutta methods for ordinary differential equations,” in Numerical Analysis and Optimization. M. Al-Baali, L. Grandinetti, and A. Purnama, Eds. Cham, Germany: Springer, 2014, pp. 37–58.
|
[21] |
B. Brogliato and A. Polyakov, “Digital implementation of sliding-mode control via the implicit method: A tutorial,” Int. J. Robust Nonlinear Control, vol. 31, no. 9, pp. 3528–3586, Jun. 2021. doi: 10.1002/rnc.5121
|
[22] |
C. Milosavljević, “General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems,” Autom. Remote Control, vol. 46, no. 3, pp. 307–314, Mar. 1985.
|
[23] |
W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 117–122, Apr. 1995. doi: 10.1109/41.370376
|
[24] |
S. Z. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the stability of discrete-time sliding mode control systems,” IEEE Trans. Automat. Control, vol. 32, no. 10, pp. 930–932, Oct. 1987. doi: 10.1109/TAC.1987.1104468
|
[25] |
K. Furuta, “Sliding mode control of a discrete system,” Syst. Control Lett., vol. 14, no. 2, pp. 145–152, Feb. 1990. doi: 10.1016/0167-6911(90)90030-X
|
[26] |
Z. Galias and X. Yu, “Euler's discretization of single input sliding-mode control systems,” IEEE Trans. Automat. Control, vol. 52, no. 9, pp. 1726–1730, Sep. 2007. doi: 10.1109/TAC.2007.904289
|
[27] |
Z. Galias and X. Yu, “Complex discretization behaviors of a simple sliding-mode control system,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 53, no. 8, pp. 652–656, Aug. 2006. doi: 10.1109/TCSII.2006.875377
|
[28] |
P. Kloeden and K. J. Palmer, Chaotic Numerics: An International Workshop on the Approximation and Computation of Complicated Dynamical Behavior, Deakin University, Geelong, Australia, July 12-16, 1993. Providence, USA: American Mathematical Society, 1994.
|
[29] |
S. Janardhanan and B. Bandyopadhyay, “On discretization of continuous-time terminal sliding mode,” IEEE Trans. Automat. Control, vol. 51, no. 9, pp. 1532–1536, Sep. 2006. doi: 10.1109/TAC.2006.880805
|
[30] |
A. K. Behera and B. Bandyopadhyay, “Discrete event-triggered sliding mode control,” in Advances in Variable Structure Systems and Sliding Mode Control – Theory and Applications. Cham, Germany: Springer, 2017, pp. 289–304.
|
[31] |
J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems. 2nd ed. New York, USA: Springer, 2007.
|
[32] |
J. Cortes, “Discontinuous dynamical systems,” IEEE Control Syst. Mag., vol. 28, no. 3, pp. 36–73, Jun. 2008. doi: 10.1109/MCS.2008.919306
|
[33] |
D. Yao, H. Li, R. Lu, and Y. Shi, “Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: An event-triggered approach,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3892–3902, Sep. 2020. doi: 10.1109/TCYB.2019.2963087
|
[34] |
J. Hu, H. Zhang, H. Liu, and X. Yu, “A survey on sliding mode control for networked control systems,” Int. J. Syst. Sci., vol. 52, no. 6, pp. 1129–1147, Feb. 2021. doi: 10.1080/00207721.2021.1885082
|
[35] |
X. Yu and O. Kaynak, “Sliding-mode control with soft computing: A survey,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3275–3285, Sep. 2009. doi: 10.1109/TIE.2009.2027531
|
[36] |
L. Hua, K. Shi, Z.-G. Wu, S. Han, and S. Zhong, “Sliding mode control for recurrent neural networks with time-varying depays and impulsive effects,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1319–1321, May 2023. doi: 10.1109/JAS.2023.123372
|
[37] |
N. T. Nguyen, X. Yu, A. Eberhard, and C. Li, “Fixed-time gradient dynamics with time-varying coefficients for continuous-time optimization,” IEEE Trans. Automat. Control, vol. 68, no. 7, pp. 4383–4390, Jul. 2023.
|
[38] |
A. Ferrara, G. P. Incremona, E. Vacchini, and N. Sacchi, “Design of neural networks based sliding mode control and observation: An overview,” in Proc. 2024 17th Int. Workshop on Variable Structure Systems, Abu Dhabi, UAE, 2024, pp. 142–147.
|