Citation: | G. Lai, K. Zeng, Y. Wang, T. Zhang, and H. Xiao, “Event-triggered adaptive control of noncanonical nonlinear systems with hysteresis inputs,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125339 |
[1] |
X. Su, Z. Liu, Y. Zhang, and C. L. P. Chen, “Event-Triggered Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Systems Preceded by Unknown Prandtl-Ishlinskii Hysteresis,” IEEE Trans. Cybernetics, vol. 51, no. 6, pp. 2979–2992, 2021. doi: 10.1109/TCYB.2019.2949022
|
[2] |
J. Wang, C. Wang, Y. Wu, Y. Li, Y. Du, and K. Chen, “Fixed-time adaptive event-triggered control for a class of uncertain nonlinear systems with input hysteresis,” Int. Journal of Control Automation and Systems, vol. 21, no. 8, pp. 2541–2553, 2023. doi: 10.1007/s12555-022-0344-9
|
[3] |
Y. Jian, D. Huang, J. Liu, and D. Min, “High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis,” IEEE Trans. Industrial Electronics, vol. 66, no. 1, pp. 368–377, 2019. doi: 10.1109/TIE.2018.2826450
|
[4] |
M. Al Janaideh, M. Rakotondrabe, and O. Aljanaideh, “Further Results on Hysteresis Compensation of Smart Micropositioning Systems With the Inverse Prandtl–Ishlinskii Compensator,” IEEE Trans. Control Systems Technology, vol. 24, no. 2, pp. 428–439, 2016. doi: 10.1109/TCST.2015.2446959
|
[5] |
M. Edardar, X. Tan, and H. K. Khalil, “Design and analysis of sliding mode controller under approximate hysteresis compensation,” IEEE Trans. Control Systems Technology, vol. 23, no. 2, pp. 598–608, 2015. doi: 10.1109/TCST.2014.2329187
|
[6] |
Y. Wang, X. Zhang, Z. Li, X. Chen, and C.-Y. Su, “Adaptive implicit inverse control for a class of butterfly-like hysteretic nonlinear systems and its application to dielectric elastomer actuators,” IEEE Trans. Industrial Electronics, vol. 70, no. 1, pp. 731–740, 2023. doi: 10.1109/TIE.2022.3146597
|
[7] |
X. Zhang, H. Xu, Z. Li, F. Shu, and X. Chen, “Adaptive neural piecewise implicit inverse controller design for a class of nonlinear systems considering butterfly hysteresis,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 6, pp. 3695–3706, 2023. doi: 10.1109/TSMC.2022.3231261
|
[8] |
X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2021. doi: 10.1109/JAS.2020.1003435
|
[9] |
X. Yuan, B. Chen, C. Lin, and B. Yang, “A concurrent event-triggered approach for fuzzy adaptive control of nonlinear strict-feedback systems,” IEEE Trans. Cybernetics, vol. 54, no. 1, pp. 342–352, 2024. doi: 10.1109/TCYB.2022.3220754
|
[10] |
L. Xing, C. Wen, Z. Liu, H. Su, and J. Cai, “Event-triggered adaptive control for a class of uncertain nonlinear systems,” IEEE Trans. Automatic Control, vol. 62, no. 4, pp. 2071–2076, 2017. doi: 10.1109/TAC.2016.2594204
|
[11] |
Z. Zhang, C. Wen, L. Xing, and Y. Song, “Adaptive event-triggered control of uncertain nonlinear systems using intermittent output only,” IEEE Trans. Automatic Control, vol. 67, no. 8, pp. 4218–4225, 2022. doi: 10.1109/TAC.2021.3115435
|
[12] |
G. Lai, K. Zeng, W. Yang, and X. Su, “Adaptive tracking control schemes for fuzzy approximation-based noncanonical nonlinear systems with hysteresis inputs,” Mathematics, vol. 11, no. 14, 2023.
|
[13] |
Y. Zhang, G. Tao, and M. Chen, “Adaptive neural network based control of noncanonical nonlinear systems,” IEEE Trans. Neural Networks and Learning Systems, vol. 27, no. 9, pp. 1864–1877, 2015.
|
[14] |
——, “Relative degrees and adaptive feedback linearization control of T–S fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 23, no. 6, pp. 2215–2230, 2015. doi: 10.1109/TFUZZ.2015.2412138
|
[15] |
G. Lai, G. Tao, Y. Zhang, and Z. Liu, “Adaptive control of noncanonical neural-network nonlinear systems with unknown input dead-zone characteristics,” IEEE Trans. Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3346–3360, 2019.
|
[16] |
M. Al Janaideh, S. Rakheja, and C. Su, “An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 4, pp. 734–744, 2011. doi: 10.1109/TMECH.2010.2052366
|
[17] |
S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness. Prentice-Hall, 1989.
|