A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
R. Chai, T. Liu, S. He, K. Chen, Y. Xia, H.-S. Shin, and A. Tsourdos, “Adaptive dual-loop disturbance observer-based robust model predictive tracking control for autonomous hypersonic vehicles,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125291
Citation: R. Chai, T. Liu, S. He, K. Chen, Y. Xia, H.-S. Shin, and A. Tsourdos, “Adaptive dual-loop disturbance observer-based robust model predictive tracking control for autonomous hypersonic vehicles,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125291

Adaptive Dual-Loop Disturbance Observer-based Robust Model Predictive Tracking Control for Autonomous Hypersonic Vehicles

doi: 10.1109/JAS.2025.125291
More Information
  • To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances, this paper designed a nonlinear robust model predictive control (RMPC) scheme, which can produce near-optimal tracking commands. Unlike the existing designs, the proposed scheme is less conservative and successfully prioritizes the solution optimality. The established RMPC follows a dual-loop structure. Specifically, in the outer feedback loop, the reference attitude angle profiles are optimally tracked, while in the inner feedback loop, the control moment commands are produced by optimally tracking the desired angular rate trajectories. Besides, an adaptive disturbance observer (ADO) is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances. The recursive feasibility of the optimization process, together with the input-to-state stability of the proposed RMPC, is theoretically guaranteed by introducing a tightened control constraint and terminal region. The derived property reveals that our proposal can steer the tracking error within a small region of convergence. Finally, the effectiveness of the proposed scheme is demonstrated by performing simulation studies.

     

  • loading
  • [1]
    C. Wei, J. Luo, H. Dai, and G. Duan, “Learning-based adaptive attitude control of spacecraft formation with guaranteed prescribed performance,” IEEE Trans. Cybernetics, vol. 49, no. 11, pp. 4004–4016, 2019. doi: 10.1109/TCYB.2018.2857400
    [2]
    F. Zhang and G. Duan, “Coupled dynamics and integrated control for position and attitude motions of spacecraft: A survey,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 12, pp. 2187–2208, 2023. doi: 10.1109/JAS.2023.123306
    [3]
    F. Han, Z. Wang, L. He, H. Wu, G. Yang, and G. Duan, “Trajectory plan for an ultra-short distance on-orbit service based on the gaussian pseudo-spectral method,” IEEE/CAA Journal of Automatica Sinica, pp. 1–9, 2018.
    [4]
    B. Tian, L. Yin, and H. Wang, “Finite-time reentry attitude control based on adaptive multivariable disturbance compensation,” IEEE Trans. Industrial Electronics, vol. 62, pp. 5889–5898, 2015. doi: 10.1109/TIE.2015.2442224
    [5]
    Y. Yang, “An efficient LQR design for discrete-time linear periodic system based on a novel lifting method,” Automatica, vol. 87, pp. 383–388, 2018. doi: 10.1016/j.automatica.2017.10.019
    [6]
    S. Long-Life, J. Jyh-Ching, L. Chen-Tsung, and J. Ying-Wen, “Spacecraft robust attitude tracking design: PID control approach,” in Proc. the 2002 American Control Conf. (IEEE Cat. No.CH37301), vol. 2, 2002, Conf. Proceedings, pp. 1360–1365.
    [7]
    M. Kordestani, A. A. Safavi, and M. Saif, “Recent survey of large-scale systems: Architectures, controller strategies, and industrial applications,” IEEE Systems Journal, pp. 1–14, 2021.
    [8]
    Z. Guo, J. Guo, J. Zhou, and J. Chang, “Robust tracking for hypersonic reentry vehicles via disturbance estimation-triggered control,” IEEE Trans. Aerospace and Electronic Systems, vol. 56, no. 2, pp. 1279–1289, 2020. doi: 10.1109/TAES.2019.2928605
    [9]
    L. Cao, B. Xiao, M. Golestani, and D. Ran, “Faster fixed-time control of flexible spacecraft attitude stabilization,” IEEE Trans. Industrial Informatics, vol. 16, no. 2, pp. 1281–1290, 2020. doi: 10.1109/TII.2019.2949588
    [10]
    W. Chen and Q. Hu, “Sliding-mode-based attitude tracking control of spacecraft under reaction wheel uncertainties,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 6, pp. 1475–1487, 2023. doi: 10.1109/JAS.2022.105665
    [11]
    L. Wang, R. Qi, L. Wen, and B. Jiang, “Adaptive multiple-model-based fault-tolerant control for non-minimum phase hypersonic vehicles with input saturations and error constraints,” IEEE Trans. Aerospace and Electronic Systems, vol. 59, no. 1, pp. 519–540, 2023. doi: 10.1109/TAES.2022.3185576
    [12]
    Y. Shou, T. Yan, B. Xu, and F. Sun, “Integrated guidance and control of hypersonic flight vehicle with coordinated mission requirement and input constraint,” Int. Journal of Robust and Nonlinear Control, vol. 33, no. 7, pp. 4262–4280, 2023. doi: 10.1002/rnc.6607
    [13]
    P. Dai, D. Feng, W. Feng, J. Cui, and L. Zhang, “Entry trajectory optimization for hypersonic vehicles based on convex programming and neural network,” Aerospace Science and Technology, vol. 137, p. 108259, 2023. doi: 10.1016/j.ast.2023.108259
    [14]
    Y. Zhang, R. Zhang, and H. Li, “Mixed-integer trajectory optimization with no-fly zone constraints for a hypersonic vehicle,” Acta Astronautica, vol. 207, pp. 331–339, 2023. doi: 10.1016/j.actaastro.2023.03.031
    [15]
    R. R. Nair and L. Behera, “Robust adaptive gain higher order sliding mode observer based control-constrained nonlinear model predictive control for spacecraft formation flying,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 367–381, 2018. doi: 10.1109/JAS.2016.7510253
    [16]
    H. Li, W. Yan, and Y. Shi, “Continuous-time model predictive control of under-actuated spacecraft with bounded control torques,” Automatica, vol. 75, pp. 144–153, 2017. doi: 10.1016/j.automatica.2016.09.024
    [17]
    D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000. doi: 10.1016/S0005-1098(99)00214-9
    [18]
    J. Sun, Z. Pu, Y. Chang, S. Ding, and J. Yi, “Appointed-time control for flexible hypersonic vehicles with conditional disturbance negation,” IEEE Trans. Aerospace and Electronic Systems, pp. 1–17, 2023.
    [19]
    L. Liu, Y. Liu, L. Zhou, B. Wang, Z. Cheng, and H. Fan, “Cascade ADRC with neural network-based ESO for hypersonic vehicle,” Journal of the Franklin Institute, vol. 360, no. 12, pp. 9115–9138, 2023. doi: 10.1016/j.jfranklin.2022.09.019
    [20]
    F. Bayat, “Model predictive sliding control for finite-time three-axis spacecraft attitude tracking,” IEEE Trans. Industrial Electronics, vol. 66, no. 10, pp. 7986–7996, 2019. doi: 10.1109/TIE.2018.2881936
    [21]
    Z. Sun, L. Dai, K. Liu, Y. Xia, and K. H. Johansson, “Robust MPC for tracking constrained unicycle robots with additive disturbances,” Automatica, vol. 90, pp. 172–184, 2018. doi: 10.1016/j.automatica.2017.12.048
    [22]
    S. Heshmati-Alamdari, G. C. Karras, P. Marantos, and K. J. Kyriakopoulos, “A robust predictive control approach for underwater robotic vehicles,” IEEE Trans. Control Systems Technology, vol. 28, no. 6, pp. 2352–2363, 2020. doi: 10.1109/TCST.2019.2939248
    [23]
    R. Chai, A. Tsourdos, H. Gao, Y. Xia, and S. Chai, “Dual-loop tube-based robust model predictive attitude tracking control for spacecraft with system constraints and additive disturbances,” IEEE Trans. Industrial Electronics, vol. 69, no. 4, pp. 4022–4033, 2022. doi: 10.1109/TIE.2021.3076729
    [24]
    B. H. Xu, D. W. Wang, Y. Zhang, and Z. ke Shi, “DOB-based neural control of flexible hypersonic flight vehicle considering wind effects,” IEEE Trans. Industrial Electronics, vol. 64, pp. 8676–8685, 2017. doi: 10.1109/TIE.2017.2703678
    [25]
    Y. Yan, J. Yang, Z. Sun, S. Li, and H. Yu, “Non-linear-disturbance-observer-enhanced MPC for motion control systems with multiple disturbances,” IET Control Theory & Applications, vol. 14, no. 1, pp. 63–72, 2020.
    [26]
    Q. Zhong, X. Fang, Z. Ding, and F. Liu, “Robust Control of Manned Submersible Vehicle With Nonlinear MPC and Disturbance Observer,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1349–1351, 2023. doi: 10.1109/JAS.2023.123429
    [27]
    D. Yan, W. Zhang, H. Chen, and J. Shi, “Robust control strategy for multi-UAVs system using MPC combined with Kalman-consensus filter and disturbance observer,” ISA Transactions, vol. 135, pp. 35–51, 2023. doi: 10.1016/j.isatra.2022.09.021
    [28]
    Éverton L. Oliveira, R. M. Orsino, and D. C. Donha, “Disturbance-observer-based model predictive control of underwater vehicle manipulator systems,” IFAC-PapersOnLine, vol. 54, no. 16, pp. 348–355, 2021. doi: 10.1016/j.ifacol.2021.10.115
    [29]
    C. Wu, J. Yang, S. Li, Q. Li, and L. Guo, “Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft,” Advances in Space Research, vol. 61, no. 9, pp. 2457–2471, 2018. doi: 10.1016/j.asr.2018.02.010
    [30]
    Y. Yang, X. Yao, and H. Xu, “Disturbance-observer-based event-triggered model predictive control of nonlinear input-affine systems,” Automatica, vol. 161, p. 111504, 2024. doi: 10.1016/j.automatica.2023.111504
    [31]
    Y. Zhang, C. Edwards, M. Belmont, and G. Li, “Robust model predictive control for constrained linear system based on a sliding mode disturbance observer,” Automatica, vol. 154, p. 111101, 2023. doi: 10.1016/j.automatica.2023.111101
    [32]
    Q. Zhang, “Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems,” IEEE Trans. Automatic Control, vol. 47, no. 3, pp. 525–529, 2002. doi: 10.1109/9.989154
    [33]
    B. Tian, W. Fan, R. Su, and Q. Zong, “Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase,” IEEE Trans. Industrial Electronics, vol. 62, no. 3, pp. 1639–1650, 2015. doi: 10.1109/TIE.2014.2341553
    [34]
    X. Zheng, S. He, and D. Lin, “Constrained trajectory optimization with flexible final time for autonomous vehicles,” IEEE Trans. Aerospace and Electronic Systems, vol. 58, no. 3, pp. 1818–1829, 2022. doi: 10.1109/TAES.2021.3121668
    [35]
    S. Walker, J. Sherk, D. Shell, R. Schena, J. Bergmann, and J. Gladbach, The DARPA/AF Falcon Program: The Hypersonic Technology Vehicle #2 (HTV-2) Flight Demonstration Phase, 2008.[Online]. Available: https: //arc.aiaa.org/doi/abs/10.2514/6.2008-2539
    [36]
    M. Köhler, L. Krügel, L. Grüne, M. A. Müller, and F. Allgöwer, “Transient Performance of MPC for Tracking,” IEEE Control Systems Letters, vol. 7, pp. 2545–2550, 2023. doi: 10.1109/LCSYS.2023.3287798
    [37]
    Z. Sun, Y. Xia, L. Dai, K. Liu, and D. Ma, “Disturbance rejection MPC for tracking of wheeled mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 6, pp. 2576–2587, 2017. doi: 10.1109/TMECH.2017.2758603
    [38]
    A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002. doi: 10.1016/S0005-1098(01)00174-1
    [39]
    W. R. van Soest, Q. P. Chu, and J. A. Mulder, “Combined feedback linearization and constrained model predictive control for entry flight,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 2, pp. 427–434, 2006. doi: 10.2514/1.14511
    [40]
    H. K. Khalil, Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall, 2002.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (24) PDF downloads(8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return