Citation: | C. Zhou, Z. Mao, B. Jiang, and X.-G. Yan, “Adaptive fault-tolerant consensus tracking control for nonlinear multi-agent systems with double semi-markovian switching topologies and unknown control directions,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125285 |
[1] |
Y. Ju, D. Ding, X. He, Q.-L. Han, and G. Wei, “Consensus control of multi-agent systems using fault-estimation-in-the-loop: Dynamic event-triggered case,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1440–1451, Aug. 2022. doi: 10.1109/JAS.2021.1004386
|
[2] |
M. Li, Y. Long, T. Li, H. Liang, and C. L. P. Chen, “Dynamic event-triggered consensus control for input constrained multi-agent systems with a designable minimum inter-event time,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 649–660, Mar. 2024. doi: 10.1109/JAS.2023.123582
|
[3] |
Z. Li and J. Chen, “Robust consensus of linear feedback protocols over uncertain network graphs,” IEEE Trans. Automat. Contr., vol. 62, no. 8, pp. 4251–4258, Aug. 2017. doi: 10.1109/TAC.2017.2685082
|
[4] |
Z. Yuan, Y. Xiong, G. Sun, J. Liu, and L. Wu, “Event-triggered quantized communication-based consensus in multiagent systems via sliding mode,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3925–3935, May 2022. doi: 10.1109/TCYB.2020.3017550
|
[5] |
H. Du, G. Wen, G. Chen, J. Cao, and F. E. Alsaadi, “A distributed finite-time consensus algorithm for higher-order leaderless and leader-following multiagent systems,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 47, no. 7, pp. 1625–1634, Jul. 2017. doi: 10.1109/TSMC.2017.2651899
|
[6] |
X. Wang, X. Wang, H. Su, and J. Lam, “Reduced-order interval observer based consensus for MASs with time-varying interval uncertainties,” Automatica, vol. 135, p. 109989, Jan. 2022. doi: 10.1016/j.automatica.2021.109989
|
[7] |
L. Xu, Y. Mo, and L. Xie, “Distributed consensus over Markovian packet loss channels,” IEEE Trans. Automat. Contr., vol. 65, no. 1, pp. 279–286, Jan. 2020. doi: 10.1109/TAC.2019.2915747
|
[8] |
H. Ren, H. Ma, H. Li, and Z. Wang, “Adaptive fixed-time control of nonlinear MASs with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1252–1262, May 2023. doi: 10.1109/JAS.2023.123558
|
[9] |
W. Wang, C. Wen, and J. Huang, “Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances,” Automatica, vol. 77, pp. 133–142, Mar. 2017. doi: 10.1016/j.automatica.2016.11.019
|
[10] |
Y. Liu and L. Li, “Adaptive leader-follower consensus control of multiple flexible manipulators with actuator failures and parameter uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1020–1031, Apr. 2023. doi: 10.1109/JAS.2023.123093
|
[11] |
G. Lin, H. Li, H. Ma, D. Yao, and R. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 111–122, Jan. 2022. doi: 10.1109/JAS.2020.1003596
|
[12] |
J. Qin, Q. Ma, H. Gao, and W. X. Zheng, “Fault-tolerant cooperative tracking control via integral sliding mode control technique,” IEEE/ASME Trans. Mechatron., vol. 23, no. 1, pp. 342–351, Feb. 2018. doi: 10.1109/TMECH.2017.2775447
|
[13] |
S. Su and Z. Lin, “Connectivity enhancing coordinated tracking control of multi-agent systems with a state-dependent jointly-connected dynamic interaction topology,” Automatica, vol. 101, pp. 431–438, Mar. 2019. doi: 10.1016/j.automatica.2018.12.030
|
[14] |
J. Ni, P. Shi, Y. Zhao, and Z. Wu, “Fixed-time output consensus tracking for high-order multi-agent systems with directed network topology and packet dropout,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 817–836, Apr. 2021. doi: 10.1109/JAS.2021.1003916
|
[15] |
X.-G. Yan and C. Edwards, “Robust decentralized actuator fault detection and estimation for large-scale systems using a sliding mode observer,” Int. J. Control, vol. 81, no. 4, pp. 591–606, Apr. 2008. doi: 10.1080/00207170701536056
|
[16] |
N. Meskin and K. Khorasani, “Actuator fault detection and isolation for a network of unmanned vehicles,” IEEE Trans. Automat. Contr., vol. 54, no. 4, pp. 835–840, Apr. 2009. doi: 10.1109/TAC.2008.2009675
|
[17] |
M. Khalili, X. Zhang, M. M. Polycarpou, T. Parisini, and Y. Cao, “Distributed adaptive fault-tolerant control of uncertain multi-agent systems,” Automatica, vol. 87, pp. 142–151, Jan. 2018. doi: 10.1016/j.automatica.2017.09.002
|
[18] |
C. Liu, B. Jiang, X. Wang, H. Yang, and S. Xie, “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, Jun. 2022. doi: 10.1109/JAS.2022.105419
|
[19] |
S. Liu, B. Jiang, Z. Mao, and Y. Zhang, “Distributed event-triggered quantized fault-tolerant control of linear multiagent systems with external disturbances and parameter uncertainties,” IEEE Trans. Cybern., vol. 54, no. 4, pp. 2099–2112, Apr. 2024. doi: 10.1109/TCYB.2022.3222459
|
[20] |
S. Xiao and J. Dong, “Distributed fault-tolerant containment control for nonlinear multi-agent systems under directed network topology via hierarchical approach,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 806–816, Apr. 2021. doi: 10.1109/JAS.2021.1003928
|
[21] |
X. Jin, “Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints,” Automatica, vol. 94, pp. 63–71, Aug. 2018. doi: 10.1016/j.automatica.2018.04.011
|
[22] |
X.-J. Li and G.-H. Yang, “Neural-network-based adaptive decentralized fault-tolerant control for a class of interconnected nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 144–155, Jan. 2018. doi: 10.1109/TNNLS.2016.2616906
|
[23] |
J. Wang, H. Zhang, J. Fu, H. Liang, and Q. Meng, “Dissipativity-based consensus tracking control of nonlinear multiagent systems with generally uncertain Markovian switching topologies and event-triggered strategy,” IEEE Trans. Cybern., vol. 53, no. 8, pp. 4763–4778, Aug. 2023. doi: 10.1109/TCYB.2022.3141599
|
[24] |
X. Jiang, G. Xia, Z. Feng, Z. Jiang, and Z.-G. Wu, “Dissipativity-based consensus tracking of singular multiagent systems with switching topologies and communication delays,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4547–4558, Jun. 2022. doi: 10.1109/TCYB.2020.3030037
|
[25] |
K. You, Z. Li, and L. Xie, “Consensus condition for linear multi-agent systems over randomly switching topologies,” Automatica, vol. 49, no. 10, pp. 3125–3132, Oct. 2013. doi: 10.1016/j.automatica.2013.07.024
|
[26] |
H. Guo, M. Meng, and G. Feng, “Lyapunov-based output containment control of heterogeneous multi-agent systems with Markovian switching topologies and distributed delays,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1421–1433, Jun. 2023. doi: 10.1109/JAS.2023.123198
|
[27] |
J. Du, C. Guo, S. Yu, and Y. Zhao, “Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient,” IEEE J. Ocean. Eng., vol. 32, no. 2, pp. 346–352, Apr. 2007. doi: 10.1109/JOE.2007.893684
|
[28] |
M. Guo, D. Xu, and L. Liu, “Cooperative output regulation of heterogeneous nonlinear multi-agent systems with unknown control directions,” IEEE Trans. Automat. Contr., vol. 62, no. 6, pp. 3039–3045, Jun. 2017. doi: 10.1109/TAC.2016.2609281
|
[29] |
T. Liu and J. Huang, “Cooperative output regulation for a class of nonlinear multi-agent systems with unknown control directions subject to switching networks,” IEEE Trans. Automat. Contr., vol. 63, no. 3, pp. 783–790, Mar. 2018. doi: 10.1109/TAC.2017.2735803
|
[30] |
Y.-W. Wang, Y. Lei, T. Bian, and Z.-H. Guan, “Distributed control of nonlinear multiagent systems with unknown and nonidentical control directions via event-triggered communication,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1820–1832, May 2020. doi: 10.1109/TCYB.2019.2908874
|
[31] |
C. Wang, C. Wen, and L. Guo, “Adaptive consensus control for nonlinear multiagent systems with unknown control directions and time-varying actuator faults,” IEEE Trans. Automat. Contr., vol. 66, no. 9, pp. 4222–4229, Sep. 2021. doi: 10.1109/TAC.2020.3034209
|
[32] |
J. Huang, Y. Song, W. Wang, C. Wen, and G. Li, “Fully distributed adaptive consensus control of a class of high-order nonlinear systems with a directed topology and unknown control directions,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2349–2356, Aug. 2018. doi: 10.1109/TCYB.2017.2737652
|
[33] |
D. Luo, Y. Wang, Z. Li, Y. Song, and F. L. Lewis, “Asymptotic leader-following consensus of heterogeneous multi-agent systems with unknown and time-varying control gains,” IEEE Trans. Autom. Sci. Eng., vol. 22, pp. 2768–2779, 2025. doi: 10.1109/TASE.2024.3384400
|
[34] |
P.-M. Liu, X.-G. Guo, J.-L. Wang, X.-P. Xie, and F.-W. Yang, “Fully distributed hierarchical ET intrusion-and fault-tolerant group control for MASs with application to robotic manipulators,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 2868–2881, Jul. 2024. doi: 10.1109/TASE.2023.3270489
|
[35] |
Y. Song, L. He, D. Zhang, J. Qian, and J. Fu, “Neuroadaptive fault-tolerant control of quadrotor UAVs: A more affordable solution,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 7, pp. 1975–1983, Jul. 2019. doi: 10.1109/TNNLS.2018.2876130
|
[36] |
A. Aghaeeyan, F. Abdollahi, and H. A. Talebi, “UAV-UGVs cooperation: With a moving center based trajectory,” Rob. Auton. Syst., vol. 63, pp. 1–9, Jan. 2015. doi: 10.1016/j.robot.2014.10.005
|
[37] |
H. Zhang, F. L. Lewis, and Z. Qu, “Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 3026–3041, Jul. 2012. doi: 10.1109/TIE.2011.2160140
|
[38] |
Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, Jul. 2006. doi: 10.1016/j.automatica.2006.02.013
|
[39] |
D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Trans. Automat. Contr., vol. 45, no. 10, pp. 1893–1899, Oct. 2000. doi: 10.1109/TAC.2000.880994
|
[40] |
J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong, “Command filtered backstepping,” IEEE Trans. Automat. Contr., vol. 54, no. 6, pp. 1391–1395, Jun. 2009. doi: 10.1109/TAC.2009.2015562
|