Citation: | X. Ban, J. Liang, K. Qiao, K. Yu, Y. Wang, J. Peng, and B. Qu, “A decision variables classification-based evolutionary algorithm for constrained multi-objective optimization problems,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125276 |
[1] |
R. Chai, A. Savvaris, A. Tsourdos, Y. Xia, and S. Chai, “Solving multiobjective constrained trajectory optimization problem by an extended evolutionary algorithm,” IEEE Trans. Cybernetics, vol. 50, no. 4, pp. 1630–1643, 2020. doi: 10.1109/TCYB.2018.2881190
|
[2] |
R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. Philip Chen, “Multiobjective overtaking maneuver planning for autonomous ground vehicles,” IEEE Trans. Cybernetics, vol. 51, no. 8, pp. 4035–4049, 2021. doi: 10.1109/TCYB.2020.2973748
|
[3] |
J. Li, H. Sang, Q. Pan, P. Duan, and K. Gao, “Solving multi-area environmental/ economic dispatch by pareto-based chemical-reaction optimization algorithm,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 5, pp. 1240–1250, 2019. doi: 10.1109/JAS.2017.7510454
|
[4] |
G. Dhiman and V. Kumar, “Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems,” Knowledge-Based Systems, vol. 150, pp. 175–197, 2018. doi: 10.1016/j.knosys.2018.03.011
|
[5] |
Z. Ma and Y. Wang, “Shift-based penalty for evolutionary constrained multiobjective optimization and its application,” IEEE Trans. Cybernetics, vol. 53, no. 1, pp. 18–30, 2023. doi: 10.1109/TCYB.2021.3069814
|
[6] |
C. Peng, X. Huang, Y. Wu, and J. Kang, “Constrained multi-objective optimization for uav-enabled mobile edge computing: Offloading optimization and path planning,” IEEE Wireless Communications Letters, vol. 11, no. 4, pp. 861–865, 2022. doi: 10.1109/LWC.2022.3149007
|
[7] |
H. Zhang, Y. Peng, L. Hou, G. Tian, and Z. Li, “A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions,” Information Sciences, vol. 481, pp. 491–506, 2019. doi: 10.1016/j.ins.2018.12.071
|
[8] |
J. Liang, X. Ban, K. Yu, B. Qu, K. Qiao, C. Yue, K. Chen, and K. C. Tan, “A survey on evolutionary constrained multiobjective optimization,” IEEE Trans. Evolutionary Computation, vol. 27, no. 2, pp. 201–221, 2023. doi: 10.1109/TEVC.2022.3155533
|
[9] |
R. Jiao, B. Xue, and M. Zhang, “A multiform optimization framework for constrained multiobjective optimization,” IEEE Trans. Cybernetics, vol. 53, no. 8, pp. 5165–5177, 2023. doi: 10.1109/TCYB.2022.3178132
|
[10] |
L. Jiao, J. Luo, R. Shang, and F. Liu, “A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems,” Applied Soft Computing, vol. 14, pp. 363–380, 2014. doi: 10.1016/j.asoc.2013.10.008
|
[11] |
H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evolutionary Computation, vol. 18, no. 4, pp. 602–622, 2014. doi: 10.1109/TEVC.2013.2281534
|
[12] |
Y. Yang, J. Liu, and S. Tan, “A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism,” Applied Soft Computing, vol. 89, p. 106104, 2020. doi: 10.1016/j.asoc.2020.106104
|
[13] |
K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, “An evolutionary multitasking optimization framework for constrained multiobjective optimization problems,” IEEE Trans. Evolutionary Computation, vol. 26, no. 2, pp. 263–277, 2022. doi: 10.1109/TEVC.2022.3145582
|
[14] |
F. Ming, W. Gong, H. Zhen, S. Li, L. Wang, and Z. Liao, “A simple two-stage evolutionary algorithm for constrained multi-objective optimization,” Knowledge-Based Systems, vol. 228, p. 107263, 2021. doi: 10.1016/j.knosys.2021.107263
|
[15] |
J. Liang, L. Zhang, K. Yu, B. Qu, F. Shang, and K. Qiao, “Interactive niching-based two-stage evolutionary algorithm for constrained multiobjective optimization,” Swarm and Evolutionary Computation, vol. 83, p. 101402, 2023. doi: 10.1016/j.swevo.2023.101402
|
[16] |
W. Huang, J. Zou, H. Tang, J. Zheng, and F. Yu, “Enhanced auxiliary population search for diversity improvement of constrained multiobjective coevolutionary optimization,” Swarm and Evolutionary Computation, vol. 83, p. 101404, 2023. doi: 10.1016/j.swevo.2023.101404
|
[17] |
K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 10, pp. 1951–1964, 2023. doi: 10.1109/JAS.2023.123336
|
[18] |
J. Liang, X. Ban, K. Yu, K. Qiao, and B. Qu, “Constrained multiobjective differential evolution algorithm with infeasible-proportion control mechanism,” Knowledge-Based Systems, vol. 250, p. 109105, 2022. doi: 10.1016/j.knosys.2022.109105
|
[19] |
K. Deb and A. Srinivasan, “Monotonicity analysis, evolutionary multi-objective optimization, and discovery of design principles, ” Indian Institute of Technology, Kanpur Genetic Algorithm Laboratory (KanGAL), Report, no. 2006004, 2006.
|
[20] |
A. Kumar, G. Wu, M. Z. Ali, Q. Luo, R. Mallipeddi, P. N. Suganthan, and S. Das, “A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results,” Swarm and Evolutionary Computation, vol. 67, p. 100961, 2021. doi: 10.1016/j.swevo.2021.100961
|
[21] |
D. García-Zamora, Á. Labella, W. Ding, R. M. Rodríguez, and L. Martínez, “Large-scale group decision making: A systematic review and a critical analysis,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 6, pp. 949–966, 2022. doi: 10.1109/JAS.2022.105617
|
[22] |
Y. Tian, H. Chen, H. Ma, X. Zhang, K. C. Tan, and Y. Jin, “Integrating conjugate gradients into evolutionary algorithms for large-scale continuous multi-objective optimization,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 10, pp. 1801–1817, 2022. doi: 10.1109/JAS.2022.105875
|
[23] |
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002. doi: 10.1109/4235.996017
|
[24] |
Z. Fan, Y. Fang, W. Li, X. Cai, C. Wei, and E. Goodman, “MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems,” Applied Soft Computing, vol. 74, pp. 621–633, 2019. doi: 10.1016/j.asoc.2018.10.027
|
[25] |
Z. Ma, Y. Wang, and W. Song, “A new fitness function with two rankings for evolutionary constrained multiobjective optimization,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 51, no. 8, pp. 5005–5016, 2021. doi: 10.1109/TSMC.2019.2943973
|
[26] |
K. Yu, J. Liang, B. Qu, Y. Luo, and C. Yue, “Dynamic selection preference-assisted constrained multiobjective differential evolution,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 52, no. 5, pp. 2954–2965, 2022. doi: 10.1109/TSMC.2021.3061698
|
[27] |
Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multi-objective optimization problems,” Swarm and evolutionary computation, vol. 44, pp. 665–679, 2019. doi: 10.1016/j.swevo.2018.08.017
|
[28] |
H. Ma, H. Wei, Y. Tian, R. Cheng, and X. Zhang, “A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints,” Information Sciences, vol. 560, pp. 68–91, 2021. doi: 10.1016/j.ins.2021.01.029
|
[29] |
Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin, “Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization,” IEEE Trans. Cybernetics, vol. 52, no. 9, pp. 9559–9572, 2022. doi: 10.1109/TCYB.2020.3021138
|
[30] |
Q. Zhu, Q. Zhang, and Q. Lin, “A constrained multiobjective evolutionary algorithm with detect-and-escape strategy,” IEEE Trans. Evolutionary Computation, vol. 24, no. 5, pp. 938–947, 2020. doi: 10.1109/TEVC.2020.2981949
|
[31] |
K. Yu, J. Liang, B. Qu, and C. Yue, “Purpose-directed two-phase multiobjective differential evolution for constrained multiobjective optimization,” Swarm and Evolutionary Computation, vol. 60, p. 100799, 2021. doi: 10.1016/j.swevo.2020.100799
|
[32] |
F. Ming, W. Gong, H. Zhen, S. Li, L. Wang, and Z. Liao, “A simple two-stage evolutionary algorithm for constrained multi-objective optimization,” Knowledge-Based Systems, vol. 228, p. 107263, 2021. doi: 10.1016/j.knosys.2021.107263
|
[33] |
Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, “A coevolutionary framework for constrained multiobjective optimization problems,” IEEE Trans. Evolutionary Computation, vol. 25, no. 1, pp. 102–116, 2021. doi: 10.1109/TEVC.2020.3004012
|
[34] |
K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evolutionary Computation, vol. 23, no. 2, pp. 303–315, 2019. doi: 10.1109/TEVC.2018.2855411
|
[35] |
Z.-Z. Liu, B.-C. Wang, and K. Tang, “Handling constrained multiobjective optimization problems via bidirectional coevolution,” IEEE Trans. Cybernetics, vol. 52, no. 10, pp. 10163–10176, 2022. doi: 10.1109/TCYB.2021.3056176
|
[36] |
J. Liang, Z. Chen, Y. Wang, X. Ban, K. Qiao, and K. Yu, “A dual-population constrained multi-objective evolutionary algorithm with variable auxiliary population size,” Complex & Intelligent Systems, vol. 9, no. 5, pp. 5907–5922, 2023.
|
[37] |
K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, C. Yue, H. Lin, and K. C. Tan, “Dynamic auxiliary task-based evolutionary multitasking for constrained multiobjective optimization,” IEEE Trans. Evolutionary Computation, vol. 27, no. 3, pp. 642–656, 2023. doi: 10.1109/TEVC.2022.3175065
|
[38] |
K. Qiao, J. Liang, K. Yu, C. Yue, H. Lin, D. Zhang, and B. Qu, “Evolutionary constrained multiobjective optimization: Scalable high-dimensional constraint benchmarks and algorithm,” IEEE Trans. Evolutionary Computation, vol. 28, no. 4, pp. 965–979, 2024. doi: 10.1109/TEVC.2023.3281666
|
[39] |
X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, “A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables,” IEEE Trans. Evolutionary Computation, vol. 20, no. 2, pp. 275–298, 2016. doi: 10.1109/TEVC.2015.2455812
|
[40] |
X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization,” IEEE Trans. Evolutionary Computation, vol. 22, no. 1, pp. 97–112, 2018. doi: 10.1109/TEVC.2016.2600642
|
[41] |
L. Ma, M. Huang, S. Yang, R. Wang, and X. Wang, “An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization,” IEEE Trans. Cybernetics, vol. 52, no. 7, pp. 6684–6696, 2022. doi: 10.1109/TCYB.2020.3041212
|
[42] |
Q. Liu, J. Zou, S. Yang, and J. Zheng, “A multiobjective evolutionary algorithm based on decision variable classification for many-objective optimization,” Swarm and Evolutionary Computation, vol. 73, p. 101108, 2022. doi: 10.1016/j.swevo.2022.101108
|
[43] |
L. Fan, T. Yoshino, T. Xu, Y. Lin, and H. Liu, “A novel hybrid algorithm for solving multiobjective optimization problems with engineering applications,” Mathematical Problems in Engineering, vol. 2018, pp. 1–15, 2018.
|
[44] |
C. A. Floudas and P. M. Pardalos, A collection of test problems for constrained global optimization algorithms. Springer, 1990.
|
[45] |
Y. Zhou, Y. Xiang, and X. He, “Constrained multiobjective optimization: Test problem construction and performance evaluations,” IEEE Trans. Evolutionary Computation, vol. 25, no. 1, pp. 172–186, 2021. doi: 10.1109/TEVC.2020.3011829
|
[46] |
J. Liang, X. Ban, K. Yu, K. Qiao, and B. Qu, “Constrained multiobjective differential evolution algorithm with infeasible-proportion control mechanism,” Knowledge-Based Systems, vol. 250, p. 109105, 2022. doi: 10.1016/j.knosys.2022.109105
|
[47] |
Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum],” IEEE Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, 2017. doi: 10.1109/MCI.2017.2742868
|
[48] |
H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Modified distance calculation in generational distance and inverted generational distance, ” in Evolutionary Multi-Criterion Optimization, 2015, pp. 110-125.
|
[49] |
E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach,” IEEE Trans. Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999. doi: 10.1109/4235.797969
|
[50] |
J. Alcalá-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, et al, “Keel: a software tool to assess evolutionary algorithms for data mining problems,” Soft Computing, vol. 13, pp. 307–318, 2009. doi: 10.1007/s00500-008-0323-y
|