Citation: | M. Lv, Y. Li, H. Gao, B. Sun, K. Huang, C. Yang, and W. Gui, “A hierarchical stochastic network approach for fault diagnosis of complex industrial processes,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125249 |
[1] |
X. Jiang, X. Kong, and Z. Ge, “Augmented industrial data-driven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, Jun. 2023. doi: 10.1109/JAS.2023.123396
|
[2] |
M. Lv, Y. Li, H. Liang, B. Sun, C. Yang, and W. Gui, “A spatial-temporal variational graph attention autoencoder using interactive information for fault detection in complex industrial processes,” IEEE Trans. Neural Netw. Learning Syst., vol. 35, no. 3, pp. 3062–3076, Mar. 2024. doi: 10.1109/TNNLS.2023.3328399
|
[3] |
P. Singh and L. K. Singh, “Modeling and measuring common cause failures in measurement of reliability of nuclear power plant systems,” IEEE Trans. Instrum. Meas., vol. 70, p. 3001608, Aug. 2021. doi: 10.1109/TIM.2021.3105265
|
[4] |
H. Chen, L. Wang, F. Peng, Q. Xu, Y. Xiong, S. Zhao, K. Tokunaga, Z. Wu, Y. Ma, P. Chen, L. Luo, and Y. Wu, “Hydrogen retention and affecting factors in rolled tungsten: Thermal desorption spectra and molecular dynamics simulations,” Int. J. Hydrogen Energy, vol. 48, no. 78, pp. 30522–30531, Sep. 2023. doi: 10.1016/j.ijhydene.2023.03.151
|
[5] |
Z. Chang and T. Han, “Prognostics and health management of photovoltaic systems based on deep learning: A state-of-the-art review and future perspectives,” Renewable Sustainable Energy Rev., vol. 205, p. 114861, Nov. 2024. doi: 10.1016/j.rser.2024.114861
|
[6] |
Y. Wang, H. Yang, X. Yuan, Y. A. Shardt, C. Yang, and W. Gui, “Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder,” J. Process Control, vol. 92, pp. 79–89, Aug. 2020. doi: 10.1016/j.jprocont.2020.05.015
|
[7] |
K. Zhong, M. Han, and B. Han, “Data-driven based fault prognosis for industrial systems: A concise overview,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 330–345, Mar. 2020. doi: 10.1109/JAS.2019.1911804
|
[8] |
B. Yang, Y. Lei, X. Li, N. Li, and A. K. Nandi, “Label recovery and trajectory designable network for transfer fault diagnosis of machines with incorrect annotation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 932–945, Apr. 2024. doi: 10.1109/JAS.2023.124083
|
[9] |
S. Yin, X. Zhu, and O. Kaynak, “Improved PLS focused on key-performance-indicator-related fault diagnosis,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1651–1658, Mar. 2015. doi: 10.1109/TIE.2014.2345331
|
[10] |
J. Li, D. Ding, and F. Tsung, “Directional PCA for fast detection and accurate diagnosis: A unified framework,” IEEE Trans. Cybern., vol. 52, no. 11, pp. 11362–11372, Nov. 2021.
|
[11] |
H. Chen, Z. Chen, Z. Chai, B. Jiang, and B. Huang, “A single-side neural network-aided canonical correlation analysis with applications to fault diagnosis,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9454–9466, Sep. 2022. doi: 10.1109/TCYB.2021.3060766
|
[12] |
C. P. Mboó and K. Hameyer, “Fault diagnosis of bearing damage by means of the linear discriminant analysis of stator current features from the frequency selection,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3861–3868, Sep.Oct. 2016. doi: 10.1109/TIA.2016.2581139
|
[13] |
P. Wu, S. Lou, X. Zhang, J. He, Y. Liu, and J. Gao, “Data-driven fault diagnosis using deep canonical variate analysis and fisher discriminant analysis,” IEEE Trans. Ind. Inf., vol. 17, no. 5, pp. 3324–3334, May 2020.
|
[14] |
Z. Ren, Y. Jiang, X. Yang, Y. Tang, and W. Zhang, “Learnable faster kernel-PCA for nonlinear fault detection: Deep autoencoder-based realization,” J. Ind. Inf. Integr., vol. 40, p. 100622, Jul. 2024.
|
[15] |
Z. Ge, S. Zhong, and Y. Zhang, “Semisupervised kernel learning for FDA model and its application for fault classification in industrial processes,” IEEE Trans. Ind. Inf., vol. 12, no. 4, pp. 1403–1411, Aug. 2016. doi: 10.1109/TII.2016.2571680
|
[16] |
G. Yang, Y. Zhao, and X. Gu, “A novel Bayesian framework with enhanced principal component analysis for chemical fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 70, p. 3504909, 2021. doi: 10.1109/TIM.2020.3034975
|
[17] |
S. Xing, Y. Lei, S. Wang, and F. Jia, “Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 2617–2625, Mar. 2021. doi: 10.1109/TIE.2020.2972461
|
[18] |
M. Sun, H. Wang, P. Liu, S. Huang, P. Wang, and J. Meng, “Stack autoencoder transfer learning algorithm for bearing fault diagnosis based on class separation and domain fusion,” IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 3047–3058, Mar. 2022. doi: 10.1109/TIE.2021.3066933
|
[19] |
N. Qin, K. Liang, D. Huang, L. Ma, and A. H. Kemp, “Multiple convolutional recurrent neural networks for fault identification and performance degradation evaluation of high-speed train bogie,” IEEE Trans. Neural Netw. Learning Syst., vol. 31, no. 12, pp. 5363–5376, Dec. 2020. doi: 10.1109/TNNLS.2020.2966744
|
[20] |
K. Huang, S. Wu, F. Li, C. Yang, and W. Gui, “Fault diagnosis of hydraulic systems based on deep learning model with multirate data samples,” IEEE Trans. Neural Netw. Learning Syst., vol. 33, no. 11, pp. 6789–6801, Nov. 2022. doi: 10.1109/TNNLS.2021.3083401
|
[21] |
H. Wang, R. Liu, S. X. Ding, Q. Hu, Z. Li, and H. Zhou, “Causal-trivial attention graph neural network for fault diagnosis of complex industrial processes,” IEEE Trans. Ind. Inf., vol. 20, no. 2, pp. 1987–1996, Feb. 2024. doi: 10.1109/TII.2023.3282979
|
[22] |
D. Chen, Z. Xie, R. Liu, W. Yu, Q. Hu, X. Li, and S. X. Ding, “Bayesian hierarchical graph neural networks with uncertainty feedback for trustworthy fault diagnosis of industrial processes,” IEEE Trans. Neural Netw. Learning Syst., vol. 35, no. 12, pp. 18635–18648, Dec. 2024. doi: 10.1109/TNNLS.2023.3319468
|
[23] |
Z. Wang, Z. Wu, X. Li, H. Shao, T. Han, and M. Xie, “Attention-aware temporal-spatial graph neural network with multi-sensor information fusion for fault diagnosis,” Knowl.-Based Syst., vol. 278, p. 110891, Oct. 2023. doi: 10.1016/j.knosys.2023.110891
|
[24] |
X. Liu, M. Yan, L. Deng, G. Li, X. Ye, and D. Fan, “Sampling methods for efficient training of graph convolutional networks: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 205–234, Feb. 2022. doi: 10.1109/JAS.2021.1004311
|
[25] |
X. Hong, T. Zhang, Z. Cui, and J. Yang, “Variational gridded graph convolution network for node classification,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1697–1708, Oct. 2021. doi: 10.1109/JAS.2021.1004201
|
[26] |
R. Wang, Z. Zhou, K. Li, T. Zhang, L. Wang, X. Xu, and X. Liao, “Learning to branch in combinatorial optimization with graph pointer networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 157–169, Jan. 2024. doi: 10.1109/JAS.2023.124113
|
[27] |
M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber, “Combinatorial optimization with physics-inspired graph neural networks,” Nat. Mach. Intell., vol. 4, no. 4, pp. 367–377, Dec. 2022. doi: 10.1038/s42256-022-00468-6
|
[28] |
J. Z. Kim, J. M. Soffer, A. E. Kahn, J. M. Vettel, F. Pasqualetti, and D. S. Bassett, “Role of graph architecture in controlling dynamical networks with applications to neural systems,” Nat. Phys., vol. 14, no. 1, pp. 91–98, Jan. 2018. doi: 10.1038/nphys4268
|
[29] |
T. Li, Z. Zhao, C. Sun, R. Yan, and X. Chen, “Multireceptive field graph convolutional networks for machine fault diagnosis,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12739–12749, Dec. 2021. doi: 10.1109/TIE.2020.3040669
|
[30] |
Z. Chen, J. Xu, T. Peng, and C. Yang, “Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9157–9169, Sep. 2022. doi: 10.1109/TCYB.2021.3059002
|
[31] |
M. Jia, J. Hu, Y. Liu, Z. Gao, and Y. Yao, “Topology-guided graph learning for process fault diagnosis,” Ind. Eng. Chem. Res., vol. 62, no. 7, pp. 3238–3248, Feb. 2023. doi: 10.1021/acs.iecr.2c03628
|
[32] |
B. M. Dash, B. O. Bouamama, M. Boukerdja, and K. M. Pekpe, “Bond graph-CNN based hybrid fault diagnosis with minimum labeled data,” Eng. Appl. Artif. Intell., vol. 131, p. 107734, May 2024. doi: 10.1016/j.engappai.2023.107734
|
[33] |
Y. Huang, J. Tao, J. Zhao, G. Sun, K. Yin, and J. Zhai, “Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine,” Energy, vol. 283, p. 129120, Nov. 2023. doi: 10.1016/j.energy.2023.129120
|
[34] |
J. Xu, H. Ke, Z. Chen, X. Fan, T. Peng, and C. Yang, “Oversmoothing relief graph convolutional network-based fault diagnosis method with application to the rectifier of high-speed trains,” IEEE Trans. Ind. Inf., vol. 19, no. 1, pp. 771–779, Jan. 2023. doi: 10.1109/TII.2022.3167522
|
[35] |
X. Wang, X. Liu, and Y. Li, “An incremental model transfer method for complex process fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1268–1280, Sep. 2019. doi: 10.1109/JAS.2019.1911618
|
[36] |
K. An, J. Lu, Q. Zhu, X. Wang, C. W. De Silva, M. Xia, and S. Lu, “Edge solution for real-time motor fault diagnosis based on efficient convolutional neural network,” IEEE Trans. Instrum. Meas., vol. 72, p. 3516912, May 2023.
|
[37] |
Y. H. Pao, S. M. Phillips, and D. J. Sobajic, “Neural-net computing and the intelligent control of systems,” Int. J. Control, vol. 56, no. 2, pp. 263–289, 1992. doi: 10.1080/00207179208934315
|
[38] |
M. Li and D. Wang, “Insights into randomized algorithms for neural networks: Practical issues and common pitfalls,” Inf. Sci., vol. 382-383, pp. 170–178, Mar. 2017. doi: 10.1016/j.ins.2016.12.007
|
[39] |
D. Wang and M. Li, “Stochastic configuration networks: Fundamentals and algorithms,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3466–3479, Oct. 2017. doi: 10.1109/TCYB.2017.2734043
|
[40] |
Q. Wang, W. Dai, X. Ma, and Z. Shang, “Driving amount based stochastic configuration network for industrial process modeling,” Neurocomputing, vol. 394, pp. 61–69, Jun. 2020. doi: 10.1016/j.neucom.2020.02.029
|
[41] |
W. Dai, X. Zhou, D. Li, S. Zhu, and X. Wang, “Hybrid parallel stochastic configuration networks for industrial data analytics,” IEEE Trans. Ind. Inf., vol. 18, no. 4, pp. 2331–2341, Apr. 2022. doi: 10.1109/TII.2021.3096840
|
[42] |
K. Li, J. Qiao, and D. Wang, “Online self-learning stochastic configuration networks for nonstationary data stream analysis,” IEEE Trans. Ind. Inf., vol. 20, no. 3, Mar. 2024.
|
[43] |
L. Guo, J. Zhu, C. Zhang, and S. Ding, “Intuitionistic fuzzy stochastic configuration networks for solving binary classification problems,” IEEE Trans. Fuzzy Syst., vol. 32, no. 8, Aug. 2024.
|
[44] |
Q. Zhang, W. Li, H. Li, and J. Wang, “Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism,” Inf. Sci., vol. 522, pp. 259–274, Jun. 2020. doi: 10.1016/j.ins.2020.02.058
|
[45] |
K. Li, J. Qiao, and D. Wang, “Fuzzy stochastic configuration networks for nonlinear system modeling,” IEEE Trans. Fuzzy Syst., vol. 32, no. 3, pp. 948–957, Mar. 2024. doi: 10.1109/TFUZZ.2023.3315368
|
[46] |
J. Liu, R. Hao, T. Zhang, and X. Wang, “Vibration fault diagnosis based on stochastic configuration neural networks,” Neurocomputing, vol. 434, pp. 98–125, Apr. 2021. doi: 10.1016/j.neucom.2020.12.080
|
[47] |
W. Li, Q. Zhang, D. Wang, W. Sun, and Q. Li, “Stochastic configuration networks for self-blast state recognition of glass insulators with adaptive depth and multi-scale representation,” Inf. Sci., vol. 604, pp. 61–79, Aug. 2022. doi: 10.1016/j.ins.2022.04.061
|
[48] |
W. Li, Y. Deng, M. Ding, D. Wang, W. Sun, and Q. Li, “Industrial data classification using stochastic configuration networks with self-attention learning features,” Neural Comput. Appl., vol. 34, no. 24, pp. 22047–22069, Aug. 2022. doi: 10.1007/s00521-022-07657-9
|
[49] |
J. Ren, J. Wen, Z. Zhao, R. Yan, X. Chen, and A. K. Nandi, “Uncertainty-aware deep learning: A promising tool for trustworthy fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1317–1330, Jun. 2024. doi: 10.1109/JAS.2024.124290
|
[50] |
Y. Yao, T. Han, J. Yu, and M. Xie, “Uncertainty-aware deep learning for reliable health monitoring in safety-critical energy systems,” Energy, vol. 291, p. 130419, Mar. 2024. doi: 10.1016/j.energy.2024.130419
|
[51] |
T. Zhou, T. Han, and E. L. Droguett, “Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework,” Reliab. Eng. Syst. Saf., vol. 224, p. 108525, Aug. 2022. doi: 10.1016/j.ress.2022.108525
|
[52] |
K. Nagami and M. Schwager, “State estimation and belief space planning under epistemic uncertainty for learning-based perception systems,” IEEE Robot. Autom. Lett., vol. 9, no. 6, pp. 5118–5125, Jun. 2024. doi: 10.1109/LRA.2024.3387139
|
[53] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 6000-6010.
|
[54] |
M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter, “xLSTM: Extended long short-term memory,” Proc. 38th Annu. Conf. Neural Information Processing Systems, Vancouver, Canada, 2024.
|
[55] |
T. Han, W. Xie, and Z. Pei, “Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine,” Inf. Sci., vol. 648, p. 119496, Nov. 2023. doi: 10.1016/j.ins.2023.119496
|