Citation: | D. Su, J. Han, C. Yang, and W. Gui, “Optimization algorithms based on double-integral coevolutionary neurodynamics in deep learning,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125210 |
[1] |
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017. doi: 10.1145/3065386
|
[2] |
Y. Deng, W. Zhang, W. Xu, Y. Shen, and W. Lam, “Classification-based prediction of network connectivity robustness,” Neural Netw., vol. 157, pp. 136–146, 2023. doi: 10.1016/j.neunet.2022.10.013
|
[3] |
X. Chen, M. Zhang, Z. Wu, L. Wu, and X. Guan, “Model-free load frequency control of nonlinear power systems based on deep reinforcement learning,” IEEE Trans Ind. Informat., vol. 20, no. 4, pp. 6825–6833, 2024. doi: 10.1109/TII.2024.3353934
|
[4] |
Z. Chen, B. Zhang, C. Du, W. Meng, and A. Meng, “A novel dynamic spatio-temporal graph convolutional network for wind speed interval prediction,” Energy, vol. 294, p. 130930, 2024. doi: 10.1016/j.energy.2024.130930
|
[5] |
M. Liu, X. Chen, M. Shang, and H. Li, “A pseudoinversion-free method for weight updating in broad learning system,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 2, pp. 2378–2389, 2022.
|
[6] |
M. Abadi et al., “Deep learning with differential privacy,” in ACM SIGSAC Conf. on Computer and Communications Security, Vienna, Austria, 2016, pp. 308–318.
|
[7] |
B. Jayaraman and D. Evans, “Evaluating differentially private machine learning in practice,” in Proc. USENIX Security Symposium, Santa Clara, USA, 2019, pp. 1895–1912.
|
[8] |
N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of security and privacy in machine learning,” arXiv preprint arXiv: 1611.03814, 2016.
|
[9] |
D. Su, Predrag S. Stanimirović, L. B. Han, and L. Jin, “Neural dynamics for improving optimiser in deep learning with noise considered,” CAAI Trans. Intell. Technol., vol. 9, no. 3, pp. 722–37, 2024. doi: 10.1049/cit2.12263
|
[10] |
C. Lee, H. Hasegawa, and S. Gao, “Complex-valued neural networks: A nomprehensive nurvey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1406–1426, Aug. 2022. doi: 10.1109/JAS.2022.105743
|
[11] |
Y. Dong, Z. Deng, T. Pang, J. Zhu, and H. Su, “Adversarial distributional training for robust deep learning,” in Proc. Advances in Neural Information Processing Systems, 2020, pp. 8270–8283.
|
[12] |
A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16, p. 100258, 2022. doi: 10.1016/j.array.2022.100258
|
[13] |
X. Wen and M. Zhou, “Evolution and role of optimizers in training deep learning models,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2039–2042, 2024. doi: 10.1109/JAS.2024.124806
|
[14] |
Y. Liu, B. Tian, Y. Lv, L. Li, and F. Y. Wang, “Point cloud classification using content-based transformer via clustering in feature space,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 231–239, 2023.
|
[15] |
N. Zeng, X. Li, P. Wu, H. Li, and X. Luo, “A novel tensor decomposition-based efficient detector for low-altitude aerial objects with knowledge distillation scheme,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 487–501, 2024. doi: 10.1109/JAS.2023.124029
|
[16] |
A. Khaled and P. Richtárik, “Better theory for SGD in the nonconvex world,” arXiv preprint arXiv: 2002.03329, 2020.
|
[17] |
L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the adaptive learning rate and beyond,” arXiv preprint arXiv: 1908.03265, 2019.
|
[18] |
W. Yang, S. Li, and X. Luo, “Data driven vibration control: A review,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 9, pp. 1898–1917, 2024. doi: 10.1109/JAS.2024.124431
|
[19] |
W. Qian, Y. Wu, and B. Shen, “Novel adaptive memory event-triggered-based fuzzy robust control for nonlinear networked systems via the differential evolution algorithm,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1836–1848, 2024. doi: 10.1109/JAS.2024.124419
|
[20] |
M. Zhou, M. Cui, D. Xu, S. Zhu, Z. Zhao, and A. Abusorrah, “Evolutionary optimization methods for high-dimensional expensive problems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1092–1105, 2024. doi: 10.1109/JAS.2024.124320
|
[21] |
J. Han, Y. Zheng, K. Wang, C. Yang, and X. Yuan, “Worst-case robust optimization based on an adaptive incremental Kriging metamodel,” Expert Syst. Appl., vol. 260, p. 125372, 2025. doi: 10.1016/j.eswa.2024.125372
|
[22] |
C. Ren, K. Wang, J. Han, L. Sun, and C. Yang, “Deterministic scenarios guided K-Adaptability in multistage robust optimization for energy management and cleaning scheduling of heat transfer process,” Energy, vol. 312, p. 133558, 2024. doi: 10.1016/j.energy.2024.133558
|
[23] |
S. Gupta, S. Singh, R. Su, S. Gao, and J. C. Bansal, “Multiple elite individual guided piecewise search-based differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 135–158, 2023. doi: 10.1109/JAS.2023.123018
|
[24] |
L. Wei, L. Jin, and X. Luo, “Noise-suppressing neural dynamics for time-dependent constrained nonlinear optimization with applications,” IEEE Trans. Syst., Man, Cybern., vol. 52, no. 10, pp. 6139–6150, 2022. doi: 10.1109/TSMC.2021.3138550
|
[25] |
L. Jin and Y. Zhang, “Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1525–1531, 2014.
|
[26] |
L. Jin, Y. Zhang, and S. Li, “Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2615–2627, 2015.
|
[27] |
L. Jin, et al, “Noise-tolerant ZNN models for solving time-varying zero-finding problems: A control-theoretic approach,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 992–997, 2016.
|
[28] |
X. F. Liu, J. Zhang, and J. Wang, “Cooperative particle swarm optimization with a bilevel resource allocation mechanism for large-scale dynamic optimization,” IEEE Trans. Cybern., vol. 53, no. 2, pp. 1000–1011, 2022.
|
[29] |
L. Wei, L. Jin, and X. Luo, “A robust coevolutionary neural-based optimization algorithm for constrained nonconvex optimization, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 6, pp. 7778−7791, 2024.
|
[30] |
L. Jin, Z. Sn, D. Fu, and X. Xiao, “Coevolutionary neural solution for nonconvex optimization with noise tolerance,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 12, pp. 17571−17581, 2024.
|
[31] |
P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 7, pp. 2217–2226, 2019. doi: 10.1109/JSTARS.2019.2918242
|
[32] |
A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Technical Report, University of Toronto, 2009.
|
[33] |
X. Gao, S. Du, and Y. Yang, “Glimpse and focus: Global and local-scale graph convolution network for skeleton-based action recognition,” Neural Netw., vol. 167, pp. 551–558, 2023. doi: 10.1016/j.neunet.2023.07.051
|