Citation: | G. Liu, K. Huang, X. Lv, Y. Sun, H. Li, X. Lei, Q. Yuan, and L. Shu, “Innovations and refinements in LiDAR odometry and mapping: A comprehensive review,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125198 |
[1] |
G. Meyer and S. Beiker, Eds., Road Vehicle Automation 3, in Lecture Notes in Mobility. Cham: Springer Int. Publishing, 2016.
|
[2] |
M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger, and O. Madsen, “Robot skills for manufacturing: From concept to industrial deployment,” Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 282–291, Feb. 2016. doi: 10.1016/j.rcim.2015.04.002
|
[3] |
L. C. Santos, F. N. Santos, E. J. Solteiro Pires, A. Valente, P. Costa, and S. Magalhaes, “Path Planning for ground robots in agriculture: a short review,” in 2020 IEEE Int. Conf. on Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal: IEEE, Apr. 2020, pp. 61–66.
|
[4] |
M. Kyrarini, F. Lygerakis, A. Rajavenkatanarayanan, C. Sevastopoulos, H. R. Nambiappan, K. K. Chaitanya, A. R. Babu, J. Mathew, and F. Makedon, “A Survey of Robots in Healthcare,” Technologies, vol. 9, no. 1, p. 8, Jan. 2021. doi: 10.3390/technologies9010008
|
[5] |
J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 55–81, Jan. 2015. doi: 10.1007/s10462-012-9365-8
|
[6] |
G. Yang, Y. Wang, J. Zhi, W. Liu, Y. Shao, and P. Peng, “A Review of Visual Odometry in SLAM Techniques,” in 2020 Int. Conf. on Artificial Intelligence and Electromechanical Automation (AIEA), Tianjin, China: IEEE, Jun. 2020, pp. 332–336.
|
[7] |
L. Huang, “Review on LiDAR-based SLAM Techniques,” in 2021 Int. Conf. on Signal Processing and Machine Learning (CONF-SPML), Stanford, CA, USA: IEEE, Nov. 2021, pp. 163–168.
|
[8] |
J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,” in Robotics: Science and Systems X, Robotics: Science and Systems Foundation, Jul. 2014.
|
[9] |
C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age,” IEEE Trans. Robotics, vol. 32, no. 6, pp. 1309–1332, Dec. 2016. doi: 10.1109/TRO.2016.2624754
|
[10] |
S. D. Varanasi, M. Tammana, and R. K. Megalingam, “Robotic Navigation Unveiled: A Comprehensive Study of GMapping, Hector Slam, and Cartographer,” in 2024 3rd Int. Conf. for Innovation in Technology (INOCON), Bangalore, India, Mar. 15–17, 2024: IEEE, pp. 1–6.
|
[11] |
S. Nagla, “2D Hector SLAM of Indoor Mobile Robot using 2D Lidar,” in 2020 Int. Conf. on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India: IEEE, Dec. 2020, pp. 1–4.
|
[12] |
S. F. A. E. Wijaya, D. S. Purnomo, E. B. Utomo, and M. A. Anandito, “Research Study of Occupancy Grid Map Mapping Method on Hector SLAM Technique,” in 2019 Int. Electronics Symposium (IES), Surabaya, Indonesia: IEEE, Sep. 2019, pp. 238–241.
|
[13] |
G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters,” IEEE Trans. Robotics, vol. 23, no. 1, pp. 34–46, Feb. 2007. doi: 10.1109/TRO.2006.889486
|
[14] |
W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” in 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), Stockholm, Sweden: IEEE, May 2016, pp. 1271–1278.
|
[15] |
A. Nüchter, M. Bleier, J. Schauer, and P. Janotta, “Improving Google’s Cartographer 3D mapping by continuous-time SLAM,” The Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W3, pp. 543–549, Feb. 2017.
|
[16] |
B. Akpınar, “Performance of Different SLAM Algorithms for Indoor and Outdoor Mapping Applications,” Applied System Innovation(ASI), vol. 4, no. 4, p. 101, Dec. 2021. doi: 10.3390/asi4040101
|
[17] |
K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement,” Int. Journal of Advanced Robotic Systems, vol. 16, no. 2, p. 172988141984153, Mar. 2019.
|
[18] |
J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,” Autonomous Robots, vol. 41, no. 2, pp. 401–416, Feb. 2017. doi: 10.1007/s10514-016-9548-2
|
[19] |
A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in 2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Providence, RI: IEEE, Jun. 2012, pp. 3354–3361.
|
[20] |
W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km: The Oxford RobotCar Dataset,” The Int. Journal of Robotics Research, vol. 36, no. 1, pp. 3–15, 2017. doi: 10.1177/0278364916679498
|
[21] |
G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, “MulRan: Multimodal Range Dataset for Urban Place Recognition,” in 2020 IEEE Int. Conf. on Robotics and Automation (ICRA), Paris, France, May 2020, pp. 6246–6253.
|
[22] |
X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The ApolloScape Open Dataset for Autonomous Driving and its Application,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 42, no. 10, pp. 2702–2719, Oct. 2020. doi: 10.1109/TPAMI.2019.2926463
|
[23] |
J. Zhu, J. Gehrung, R. Huang, B. Borgmann, Z. Sun, L. Hoegner, M. Hebel, Y. Xu, and U. Stilla, “TUM-MLS-2016: An Annotated Mobile LiDAR Dataset of the TUM City Campus for Semantic Point Cloud Interpretation in Urban Areas,” Remote Sensing, vol. 12, no. 11, p. 1875, Jun. 2020. doi: 10.3390/rs12111875
|
[24] |
X. Xu, L. Zhang, J. Yang, C. Cao, W. Wang, Y. Ran, Z. Tan, and M. Luo, “A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR,” Remote Sensing, vol. 14, no. 12, p. 2835, Jun. 2022. doi: 10.3390/rs14122835
|
[25] |
C. Xiang, C. Feng, X. Xie, B. Shi, H. Lu, Y. Lv, M. Yang, and Z. Niu, “Multi-Sensor Fusion and Cooperative Perception for Autonomous Driving: A Review,” IEEE Intelligent Transportation Systems Magazine, vol. 15, no. 5, pp. 36–58, Sep. 2023. doi: 10.1109/MITS.2023.3283864
|
[26] |
K. Huang, B. Shi, X. Li, X. Li, S. Huang, and Y. Li, “Multi-modal Sensor Fusion for Auto Driving Perception: A Survey,” arXiv preprint, arXiv: 2202.02703 [cs], Feb. 2022.
|
[27] |
S. Zhao, Z. Fang, H. Li, and S. Scherer, “A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments,” in 2019 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Macau, China: IEEE, Nov. 2019, pp. 1285–1292.
|
[28] |
T.-M. Nguyen, S. Yuan, M. Cao, Y. Lyu, T. H. Nguyen, and L. Xie, “MILIOM: Tightly Coupled Multi-Input Lidar-Inertia Odometry and Mapping,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5573–5580, Jul. 2021. doi: 10.1109/LRA.2021.3080633
|
[29] |
W. Xu and F. Zhang, “FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3317–3324, Apr. 2021. doi: 10.1109/LRA.2021.3064227
|
[30] |
H. Zhang, Z.-Q. Liu, and Y.-L. Wang, “U-LOAM: A Real-Time 3D Lidar SLAM System for Water-Surface Scene Applications,” in 2022 IEEE Int. Conf. on Unmanned Systems (ICUS), Guangzhou, China: IEEE, Oct. 2022, pp. 653–657.
|
[31] |
Y. Su, T. Wang, S. Shao, C. Yao, and Z. Wang, “GR-LOAM: LiDAR-based sensor fusion SLAM for ground robots on complex terrain,” Robotics and Autonomous Systems, vol. 140, p. 103759, Jun. 2021. doi: 10.1016/j.robot.2021.103759
|
[32] |
J. Zhang and S. Singh, “Visual-lidar odometry and mapping: low-drift, robust, and fast,” in 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), Seattle, WA, USA: IEEE, May 2015, pp. 2174–2181.
|
[33] |
M. Yan, J. Wang, J. Li, and C. Zhang, “Loose coupling visual-lidar odometry by combining VISO2 and LOAM,” in 2017 36th Chinese Control Conf. (CCC), Dalian, China: IEEE, Jul. 2017, pp. 6841–6846.
|
[34] |
Z. Yuan, Q. Wang, K. Cheng, T. Hao, and X. Yang, “SDV-LOAM: Semi-Direct Visual–LiDAR Odometry and Mapping,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 45, no. 9, pp. 11203–11220, Sep. 2023. doi: 10.1109/TPAMI.2023.3262817
|
[35] |
Y. Zhu, B. Xue, L. Zheng, H. Huang, M. Liu and R. Fan, “Real-Time, Environmentally-Robust 3D LiDAR Localization,” 2019 IEEE Int. Conf. on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab Emirates, 2019, pp. 1-6.
|
[36] |
S. Du, B. Yu, L. Huang, Y. Li, and S. Li, “GNSS-Assisted LiDAR Odometry and Mapping for Urban Environment,” IEEE Sensors Journal, vol. 23, no. 18, pp. 21787–21802, Sep. 2023. doi: 10.1109/JSEN.2023.3303427
|
[37] |
J. Zhang and S. Singh, “Laser–visual–inertial odometry and mapping with high robustness and low drift,” Journal of Field Robotics, vol. 35, no. 8, pp. 1242–1264, Dec. 2018. doi: 10.1002/rob.21809
|
[38] |
Y. Zhang, H. Sun, F. Zhang, B. Zhang, S. Tao, H. Li, K. Qi, S. Zhang, S. Ninomiya, and Y. Mu, “Real-Time Localization and Colorful Three-Dimensional Mapping of Orchards Based on Multi-Sensor Fusion Using Extended Kalman Filter,” Agronomy, vol. 13, no. 8, p. 2158, Aug. 2023. doi: 10.3390/agronomy13082158
|
[39] |
T. Li, L. Pei, Y. Xiang, Q. Wu, S. Xia, L. Tao, X. Guan, and W. Yu, “P3-LOAM: PPP/LiDAR Loosely Coupled SLAM With Accurate Covariance Estimation and Robust RAIM in Urban Canyon Environment,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6660–6671, Mar. 2021. doi: 10.1109/JSEN.2020.3042968
|
[40] |
T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping,” in 2020 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA: IEEE, Oct. 2020, pp. 5135–5142.
|
[41] |
T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain,” in 2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Madrid, Spain: IEEE, Oct. 2018, pp. 4758–4765.
|
[42] |
X. Ji, L. Zuo, C. Zhang, and Y. Liu, “LLOAM: LiDAR Odometry and Mapping with Loop-closure Detection Based Correction,” in 2019 IEEE Int. Conf. on Mechatronics and Automation (ICMA), Tianjin, China: IEEE, Aug. 2019, pp. 2475–2480.
|
[43] |
S. Yi, Y. Lyu, L. Hua, Q. Pan, and C. Zhao, “Light-LOAM: A Lightweight LiDAR Odometry and Mapping based on Graph-Matching,” arXiv preprint, arXiv: 2310.04162 [cs.RO], Oct. 2023.
|
[44] |
C. Gonzalez and M. Adams, “An improved feature extractor for the Lidar Odometry and Mapping (LOAM) algorithm,” in 2019 Int. Conf. on Control, Automation and Information Sciences (ICCAIS), Chengdu, China: IEEE, Oct. 2019, pp. 1–7.
|
[45] |
C. Gonzalez and M. Adams, “Curvature Scale Space LiDAR Odometry And Mapping (LOAM),” Journal of Intelligent & Robotic Systems, vol. 110, no. 2, p. 67, Apr. 2024.
|
[46] |
Z. Wang, L. Yang, F. Gao, and L. Wang, “FEVO-LOAM: Feature Extraction and Vertical Optimized Lidar Odometry and Mapping,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 12086–12093, Oct. 2022. doi: 10.1109/LRA.2022.3201689
|
[47] |
H. Pan, S. Li, Q. Liu, Y. Xu, P. Ji, and X. Kang, “Trajectory Tracking Method of Crawler Robot Based on Improved LOAM,” in 2020 12th Int. Conf. on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China: IEEE, Aug. 2020, pp. 154–157.
|
[48] |
Z. Zhang, Z. Yao, and M. Lu, “OW-LOAM: Observation-Weighted LiDAR Odometry and Mapping,” in 2022 IEEE 12th Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Beijing, China: IEEE, Sep. 2022, pp. 1–8.
|
[49] |
J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV,” in 2020 IEEE Int. Conf. on Robotics and Automation (ICRA), Paris, France: IEEE, May 2020, pp. 3126–3131.
|
[50] |
N. Rufus, U. K. R. Nair, A. V. S. S. Bhargav Kumar, V. Madiraju, and K. M. Krishna, “SROM: Simple Real-time Odometry and Mapping using LiDAR data for Autonomous Vehicles,” arXiv preprint arXiv: 2005.02042, May 2020.
|
[51] |
Y. S. Park, H. Jang, and A. Kim, “I-LOAM: Intensity Enhanced LiDAR Odometry and Mapping,” in 2020 17th Int. Conf. on Ubiquitous Robots (UR), Kyoto, Japan: IEEE, Jun. 2020, pp. 455–458.
|
[52] |
H. Guo, J. Zhu, and Y. Chen, “E-LOAM: LiDAR Odometry and Mapping With Expanded Local Structural Information,” IEEE Trans. Intelligent Vehicles, vol. 8, no. 2, pp. 1911–1921, Feb. 2023. doi: 10.1109/TIV.2022.3151665
|
[53] |
H. Wang, C. Wang, C.-L. Chen, and L. Xie, “F-LOAM: Fast LiDAR Odometry And Mapping,” in 2021 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Sep. 2021, pp. 4390–4396.
|
[54] |
S. W. Chen, G. V. Nardari, E. S. Lee, C. Qu, X. Liu, R. A. F. Romero, and V. Kumar, “SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 612–619, Apr. 2020. doi: 10.1109/LRA.2019.2963823
|
[55] |
S. Du, Y. Li, X. Li, and M. Wu, “LiDAR Odometry and Mapping Based on Semantic Information for Outdoor Environment,” Remote Sensing, vol. 13, no. 15, p. 2864, Jul. 2021. doi: 10.3390/rs13152864
|
[56] |
L. Li, X. Kong, X. Zhao, W. Li, F. Wen, H. Zhang, and Y. Liu, “SA-LOAM: Semantic-aided LiDAR SLAM with loop closure,” in 2021 IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, 2021, pp. 7627–7634.
|
[57] |
N. Dong, R. Chi, and W. Zhang, “LiDAR Odometry and Mapping Based on Semantic Information for Maize Field,” Agronomy, vol. 12, no. 12, p. 3107, Dec. 2022. doi: 10.3390/agronomy12123107
|
[58] |
M. Zhu, Y. Yang, W. Song, M. Wang, and M. Fu, “AGCV-LOAM: Air-Ground Cross-View based LiDAR Odometry and Mapping,” in 2020 Chinese Control And Decision Conf. (CCDC), Hefei, China: IEEE, Aug. 2020, pp. 5261–5266.
|
[59] |
J. Deng, Q. Wu, X. Chen, S. Xia, Z. Sun, G. Liu, W. Yu, and L. Pei, “NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental LiDAR Odometry and Mapping,” in 2023 IEEE/CVF Int. Conf. on Computer Vision (ICCV), Paris, France: IEEE, Oct. 2023, pp. 8184–8193.
|
[60] |
P. Zhou, X. Guo, X. Pei, and C. Chen, “T-LOAM: Truncated Least Squares LiDAR-Only Odometry and Mapping in Real Time,” IEEE Trans. Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
|
[61] |
D.-U. Seo, H. Lim, S. Lee, and H. Myung, “PaGO-LOAM: Robust Ground-Optimized LiDAR Odometry,” in 2022 19th Int. Conf. on Ubiquitous Robots (UR), Jeju, Korea, Republic of: IEEE, Jul.
|
[62] |
X. Wang, Y. Wang, J. Liu, Z. Tian, and L. Li, “DRI-LOAM: A LOAM-Based Dynamic Objects Removal Strategy Using Range Images,” in 2023 42nd Chinese Control Conf. (CCC), Tianjin, China: IEEE, Jul. 2023, pp. 3571–3576.
|
[63] |
J. Li, X. Zhang, Y. Zhang, Y. Chang, and K. Zhao, “RF-LOAM: Robust and Fast LiDAR Odometry and Mapping in Urban Dynamic Environment,” IEEE Sensors Journal, vol. 23, no. 23, pp. 29186–29199, Dec. 2023. doi: 10.1109/JSEN.2023.3324429
|
[64] |
L. Liao, C. Fu, B. Feng, and T. Su, “Optimized SC-F-LOAM: Optimized Fast LiDAR Odometry and Mapping Using ScanContext,” in 2022 6th CAA Int. Conf. on Vehicular Control and Intelligence (CVCI), Nanjing, China: IEEE, Oct. 2022, pp. 1–6.
|
[65] |
G. Xue, J. Wei, R. Li, and J. Cheng, “LeGO-LOAM-SC: An Improved Simultaneous Localization and Mapping Method Fusing LeGO-LOAM and ScanContext for Underground Coalmine,” Sensors, vol. 22, no. 2, p. 520, Jan. 2022. doi: 10.3390/s22020520
|
[66] |
H. Qin, Y. Zou, G. Yu, H. Liu, and Y. Tan, “SOHD-LOAM: Suppress Odometry Height Drift LiDAR Odometry and Mapping on Undulating Road,” Journal of Intelligent and Fuzzy Systems, pp. 1–14, Apr. 2024.
|
[67] |
X. Liu, L. Zhang, S. Qin, D. Tian, S. Ouyang, and C. Chen, “Optimized LOAM Using Ground Plane Constraints and SegMatch-Based Loop Detection,” Sensors, vol. 19, no. 24, p. 5419, Dec. 2019. doi: 10.3390/s19245419
|
[68] |
G. Xue, R. Li, S. Liu, and J. Wei, “Research on Underground Coal Mine Map Construction Method Based on LeGO-LOAM Improved Algorithm,” Energies, vol. 15, no. 17, p. 6256, Aug. 2022. doi: 10.3390/en15176256
|
[69] |
R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “SegMatch: Segment based loop-closure for 3D point clouds,” in 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), Singapore: IEEE, May 2017, pp. 5266–5272.
|
[70] |
R. Dube, M. G. Gollub, H. Sommer, I. Gilitschenski, R. Siegwart, C. Cadena, and J. Nieto, “Incremental-Segment-Based Localization in 3-D Point Clouds,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1832–1839, Jul. 2018. doi: 10.1109/LRA.2018.2803213
|
[71] |
R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena, “SegMap: 3D Segment Mapping using Data-Driven Descriptors,” in Robotics: Science and Systems XIV, Robotics: Science and Systems Foundation, Jun. 2018, pp. 1–8.
|
[72] |
R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R. Siegwart, and C. Cadena, “SegMap: Segment-based mapping and localization using data-driven descriptors,” The Int. Journal of Robotics Research, vol. 39, no. 2-3, pp. 339–355, Mar. 2020. doi: 10.1177/0278364919863090
|
[73] |
W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-Making for Autonomous Vehicles,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 187–210, May 2018. doi: 10.1146/annurev-control-060117-105157
|
[74] |
T. Qin and S. Cao, “A-LOAM: Advanced Implementation of LOAM,” GitHub Repository, 2024. [Online]. Available: https://github.com/HKUST-Aerial-Robotics/A-LOAM.
|
[75] |
B. Basso and J. Antle, “Digital agriculture to design sustainable agricultural systems,” Nature Sustainability, vol. 3, no. 4, pp. 254–256, Apr. 2020. doi: 10.1038/s41893-020-0510-0
|
[76] |
P. Rattan, G. Sharma, and P. P. Singh, “Application of Artificial Intelligence (AI) in the Agriculture Sector,” in Advances in Environmental Engineering and Green Technologies, A. Khang, Ed. IGI Global, 2024, pp. 45–68.
|
[77] |
F. Ou, Z. Miao, N. Li, C. He, and Y. Li, “Laser Loop Closure Detection Algorithm Based on DBP in Complex Orchard Scenarios,” Transactions of the Chinese Society for Agricultural Machinery, vol. 54, no. 5, pp. 29–35, 2023.
|
[78] |
R. J. H. Kemper, C. Gonzalez, and S. R. P. Gardini, “Autonomous Navigation of a Four-Wheeled Robot in a Simulated Blueberry Farm Environment,” in 2022 IEEE ANDESCON, Barranquilla, Colombia: IEEE, Nov. 2022, pp. 1–6.
|
[79] |
X. Yao, Y. Bai, B. Zhang, D. Xu, G. Cao, and Y. Bian, “Autonomous navigation and adaptive path planning in dynamic greenhouse environments utilizing improved LeGO‐LOAM and OpenPlanner algorithms,” Journal of Agricultural Robotics, 2024.
|
[80] |
J. Chen, H. Wang, and S. Yang, “Tightly Coupled LiDAR-Inertial Odometry and Mapping for Underground Environments,” Sensors, vol. 23, no. 15, p. 6834, Jul. 2023. doi: 10.3390/s23156834
|
[81] |
G. Xue, R. Li, Z. Zhang, S. Liu, and J. Wei, “Research on LiDAR-based Map Fusion Construction Method for Mine Shaft Yard,” Coal Science and Technology, vol. 51, no. 8, pp. 219–227, 2023.
|
[82] |
Q. Zhang, L. Cui, X. Du, and B. Ma, “3D LiDAR SLAM Algorithm for Mapping and Localization in Mine Environments,” Bulletin of Surveying and Mapping, vol. 2023, no. 5, pp. 72–77, 2023.
|
[83] |
F. Shuang, H. Ma, J. Yang, and S. Li, “Precision Positioning Strategy for Cable Duct Inspection Robots Based on Improved EKF_LOAM,” Journal of Chinese Inertial Technology, vol. 32, no. 4, pp. 326–335, 2024.
|
[84] |
Z. Yuan, J. Deng, R. Ming, F. Lang, and X. Yang, “SR-LIVO: LiDAR-Inertial-Visual Odometry and Mapping With Sweep Reconstruction,” IEEE Robotics and Automation Letters, vol. 9, no. 6, pp. 5110–5117, Jun. 2024. doi: 10.1109/LRA.2024.3389415
|
[85] |
H. Zhang, L. Du, S. Bao, J. Yuan, and S. Ma, “LVIO-Fusion: Tightly-Coupled LiDAR-Visual-Inertial Odometry and Mapping in Degenerate Environments,” IEEE Robotics and Automation Letters, vol. 9, no. 4, pp. 3783–3790, Apr. 2024. doi: 10.1109/LRA.2024.3371383
|
[86] |
T. Song, Y. Zheng, S. He, Z. Xiong, P. Wang, and X. Wu, “MLIOM-AB: Multi-LiDAR-Inertial-Odometry and Mapping for Autonomous Buses,” IEEE Sensors Journal, vol. 24, no. 17, pp. 28036–28048, Sep. 2024. doi: 10.1109/JSEN.2024.3431678
|
[87] |
Y. Fang, K. Qian, Y. Zhang, T. Shi, and H. Yu, “Segmented Curved-Voxel Occupancy Descriptor for Dynamic-Aware LiDAR Odometry and Mapping,” IEEE Trans. Geoscience and Remote Sensing, vol. 62, pp. 1–16, 2024.
|
[88] |
C. Zhang, M. Chen, G. Wang, Y. Lin, K. Li, M. Wu, Z. Li, and Q. Wang, “LIWOM-GD: Enhanced LiDAR–Inertial–Wheel Odometry and Mapping by Fusion With Ground Constraint and Dynamic Points Elimination,” IEEE Sensors Journal, vol. 24, no. 19, pp. 30287–30303, Oct. 2024. doi: 10.1109/JSEN.2024.3431102
|
[89] |
X. Xu, J. Hu, L. Zhang, C. Cao, J. Yang, Y. Ran, Z. Tan, L. Xu, and M. Luo, “Detection-first tightly-coupled LiDAR-Visual-Inertial SLAM in dynamic environments,” Measurement, vol. 239, p. 115506, Jan. 2025. doi: 10.1016/j.measurement.2024.115506
|
[90] |
Q. Wang and M. Wang, “A novel 3D LiDAR deep learning approach for uncrewed vehicle odometry,” PeerJ Computer Science, vol. 10, p. e2189, Jul. 2024. doi: 10.7717/peerj-cs.2189
|
[91] |
R. Huang, M. Zhao, J. Chen, and L. Li, “KDD-LOAM: Jointly Learned Keypoint Detector and Descriptors Assisted LiDAR Odometry and Mapping,” in 2024 IEEE Int. Conf. on Robotics and Automation (ICRA), Yokohama, Japan: IEEE, May 2024, pp. 8559–8565.
|
[92] |
D. Chung and J. Kim, “NV-LIOM: LiDAR-Inertial Odometry and Mapping Using Normal Vectors Towards Robust SLAM in Multifloor Environments,” IEEE Robotics and Automation Letters, vol. 9, no. 11, pp. 9375–9382, Nov. 2024. doi: 10.1109/LRA.2024.3457373
|
[93] |
F. Yang, W. Li, and L. Zhao, “NA-LOAM: Normal-Based Adaptive LiDAR Odometry and Mapping,” IEEE Sensors Journal, vol. 24, no. 19, pp. 30715–30725, Oct. 2024. doi: 10.1109/JSEN.2024.3446998
|
[94] |
J. Rakun, F. Duchoň, and P. Lepej, “Spatial LiDAR odometry and mapping for complex agricultural environments - Spatial FieldLOAM,” Biosystems Engineering, vol. 248, pp. 58–72, Dec. 2024. doi: 10.1016/j.biosystemseng.2024.09.020
|
[95] |
Z. Qin, H. Wang, and P. Lv, “Research on Simultaneous Localization and Mapping Method for Orchards Based on ScanContext and NDT-ICP Fusion Scheme,” INMATEH Agricultural Engineering, vol. 73, no. 2, pp. 636–646, Aug. 2024.
|
[96] |
H. Liu, H. Gao, J. Shi, C. Xu, D. Qu, and W. Hua, “APMC-LOM: Accurate 3D LiDAR Odometry and Mapping based on Pyramid Warm-Up Registration and Multi-Constraint Optimization,” IEEE Trans. Vehicular Technology, vol. 73, pp. 1–16, 2024. doi: 10.1109/TVT.2024.3505080
|
[97] |
T. G. Dao, H. D. Tran, N. P. Dao, D. T. Tran, and A. Q. Nguyen, “Accuracy and Speed Improvement of Lidar Inertial Odometry and Mapping by using Gravity Estimation and Incremental Voxels,” in 2024 Tenth Int. Conf. on Communications and Electronics (ICCE), Danang, Vietnam: IEEE, Jul. 2024, pp. 550–555.
|
[98] |
K. Li, L. Li, Z. He, H. Xu, and Y. Dai, “Laser SLAM Method for Nearshore Unmanned Boats Based on Embankment Feature Extraction,” Laser & Optoelectronics Progress, vol. 61, no. 14, p. 1428003, 2024.
|
[99] |
Z. Zhou, C. Zhang, C. Li, Y. Zhang, Y. Shi, and W. Zhang, “A tightly-coupled LIDAR-IMU SLAM method for quadruped robots,” Measurement and Control, vol. 57, no. 7, pp. 1004–1013, Jul. 2024. doi: 10.1177/00202940231224593
|
[100] |
X. Cao, C. Wei, J. Hu, M. Ding, M. Zhang, and Z. Kang, “RDP-LOAM: Remove-Dynamic-Points LiDAR Odometry and Mapping,” in 2023 IEEE Int. Conf. on Unmanned Systems (ICUS), Hefei, China, Oct. 2023, pp. 211–216.
|
[101] |
H. Wang, H. Liang, Z. Li, X. Zheng, H. Xu, P. Zhou, and B. Kong, “InLIOM: Tightly-Coupled Intensity LiDAR Inertial Odometry and Mapping,” IEEE Trans. Intelligent Transportation Systems, vol. 25, no. 9, pp. 11821–11832, Sep. 2024. doi: 10.1109/TITS.2024.3370235
|
[102] |
Q. Gu, C. Bai, L. Chen, M. Li, M. Fu, and W. Wang, “Localization and Mapping Method for Autonomous Mining Trucks in Underground Inclined Roadways Based on Multi-Line LiDAR,” Journal of China Coal Society, vol. 49, no. 3, pp. 1680–1688, 2024.
|
[103] |
H. Fan, Y. Li, R. Guo, and X. Chen, “Research on a SLAM System for Unmanned Ammunition Supply Vehicles Based on IMU and LiDAR Fusion,” Journal of Ordnance Equipment Engineering, vol. 45, no. 5, pp. 196–201, 2024.
|
[104] |
Q. Xu, “Synchronized Modeling and Task Planning for a Ski Jump Ramp Grooming Robot,” Master’s thesis, Shenyang University of Technology, 2024.
|
[105] |
Y. Wang, Z. Hua, J. Chen, J. Zhu, H. Wu, J. Fan, and R. Lin, “Design of a Drone Positioning and Navigation System for Boiler Confined Spaces,” Journal of Power Engineering, vol. 41, no. 11, pp. 966–971, 2021.
|
[106] |
C. Campolo, G. Genovese, A. Iera, and A. Molinaro, “Virtualizing AI at the Distributed Edge towards Intelligent IoT Applications,” Journal of Sensor and Actuator Networks, vol. 10, no. 1, p. 13, 2021. doi: 10.3390/jsan10010013
|
[107] |
O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 718–752, Apr. 2021. doi: 10.1109/JAS.2021.1003925
|
[108] |
X. Yang, L. Shu, K. Li, Z. Huo, S. Shu, and E. Nurellari, “SILOS: An Intelligent Fault Detection Scheme for Solar Insecticidal Lamp IoT With Improved Energy Efficiency,” IEEE Internet of Things Journal, vol. 10, no. 1, pp. 920–939, Jan. 1, 2023.
|