Citation: | J. Zhu, Z. Jiang, D. Pan, H. Yu, C. Xu, K. Zhou, and W. Gui, “An intelligent optimization strategy for blast furnace charging operation considering three-dimensional burden surface shape,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125192 |
[1] |
J. Zhao, Y. Liu, W. Pedrycz, and W. Wang, “Spatiotemporal prediction for energy system of steel industry by generalized tensor granularity based evolving type-2 fuzzy neural network,” IEEE Trans. Ind. Inf., vol. 17, no. 12, pp. 7933–7945, Jan. 2021. doi: 10.1109/TII.2021.3062036
|
[2] |
P. Zhou, H. Song, H. Wang, and T. Chai, “Data-driven nonlinear subspace modeling for prediction and control of molten iron quality indices in blast furnace ironmaking,” IEEE Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1761–1774, Sep. 2017. doi: 10.1109/TCST.2016.2631124
|
[3] |
S. Lou, C. Yang, Z. Liu, S. Wang, H. Zhang, and P. Wu, “Release power of mechanism and data fusion: A hierarchical strategy for enhanced MIQ-related modeling and fault detection in BFIP,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124821.
|
[4] |
J. Li, C. Hua, and Y. Yang, “A novel multiple-input–multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnace,” IEEE Trans. Ind. Electron., vol. 68, no. 11, pp. 11309–11317, Nov. 2021. doi: 10.1109/TIE.2020.3031525
|
[5] |
P. Zhou, W. Li, H. Wang, M. Li, and T. Chai, “Robust online sequential RVFLNs for data modeling of dynamic time-varying systems with application of an ironmaking blast furnace,” IEEE T. Cybern., vol. 50, no. 11, pp. 4783–4795, Nov. 2020. doi: 10.1109/TCYB.2019.2920483
|
[6] |
H. Zhang, J. Shang, J. Zhang, and C. Yang, “Nonstationary process monitoring for blast furnaces based on consistent trend feature analysis,” IEEE Trans. Control Syst. Technol., vol. 30, no. 3, pp. 1257–1267, May. 2022. doi: 10.1109/TCST.2021.3105540
|
[7] |
K. Li, T. Zhang, W. Dong, and H. Ye, “Abnormality Detection of Blast Furnace Ironmaking Process Based on an Improved Diffusion Convolutional Gated Recurrent Unit Network,” IEEE Trans. Instrum. Meas., vol. 72, Sep. 2023.
|
[8] |
S. Lou, C. Yang, and P. Wu, “A local dynamic broad kernel stationary subspace analysis for monitoring blast furnace ironmaking process,” IEEE Trans. Ind. Inf., vol. 19, no. 4, pp. 5945–5955, Apr. 2023. doi: 10.1109/TII.2022.3198170
|
[9] |
L. Chen, L. Wang, Z. Han, J. Zhao, and W. Wang, “Variational inference based kernel dynamic Bayesian networks for construction of prediction intervals for industrial time series with incomplete input,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1437–1445, Sep. 2020. doi: 10.1109/JAS.2019.1911645
|
[10] |
J. Li, C. Hua, Y. Yang, and X. Guan, “Data-driven Bayesian-based Takagi–Sugeno fuzzy modeling for dynamic prediction of hot metal silicon content in blast furnace,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 2, pp. 1087–1099, Feb. 2022. doi: 10.1109/TSMC.2020.3013972
|
[11] |
Y. Zhang, P. Zhou, D. Lv, S. Zhang, G. Cui, and H. Wang, “Inverse calculation of burden distribution matrix using b-spline model based PDF control in blast furnace burden charging process,” IEEE Trans. Ind. Inf., vol. 19, no. 1, pp. 317–327, Jan. 2023.
|
[12] |
H. Wang, W. Li, T. Zhang, J. Li, and X. Chen, “Learning-based key points estimation method for burden surface profile detection in blast furnace,” IEEE Sens. J., vol. 22, no. 10, pp. 9589–9597, May. 2022. doi: 10.1109/JSEN.2022.3163373
|
[13] |
Y. Li, S. Zhang, J. Zhang, Y. Yin, W. Xiao and Z. Zhang, “Data-driven multiobjective optimization for burden surface in blast furnace with feedback compensation,” IEEE Trans. Ind. Inf., vol. 16, no. 4, pp. 2233–2244, Apr. 2020. doi: 10.1109/TII.2019.2908989
|
[14] |
V. Radhakrishnan and K. Ram, “Mathematical model for predictive control of the bell-less top charging system of a blast furnace,” J. Process Control, vol. 11, no. 5, pp. 565–586, Oct. 2001. doi: 10.1016/S0959-1524(00)00026-3
|
[15] |
Y. Liu, The Blast Furnace Burden Distribution Law, 4th ed. Beijing, China: Metallurgical Industry Press, 2005.
|
[16] |
Y. Yu, C. Bai, D. Liang, F. Xia, and W. Niu, “A Mathematical model for bell-less top charging,” Iron Steel, vol. 43, no. 11, Nov. 2008.
|
[17] |
J. Chen, H. Zuo, Q. Xue, and J. Wang, “A review of burden distribution models of blast furnace,” Powder Technol., vol. 398, no. 117055, Jan. 2022.
|
[18] |
S. Kuang, Z. Li, and A. Yu, “Review on modeling and simulation of blast furnace,” Steel Res. Int., vol. 89, no. 1, p. 1700071, Jan. 2018. doi: 10.1002/srin.201700071
|
[19] |
P.Y. Shi, D. Fu, P. Zhou, and C.Q. Zhou, “Evaluation of stock profile models for burden distribution in blast furnace,” Ironmak. Steelmaking, vol. 42, no. 10, pp. 756–762, Nov. 2015. doi: 10.1179/1743281215Y.0000000017
|
[20] |
S. Nag, A. Gupta, S. Paul, D. Gavel, and B. Aich, “Prediction of heap shape in blast furnace burden distribution,” ISIJ Int., vol. 54, no. 7, pp. 1517–1520, Jul. 2014. doi: 10.2355/isijinternational.54.1517
|
[21] |
D. Fu, Y. Chen, and C. Q. Zhou, “Mathematical modeling of blast furnace burden distribution with non-uniform descending speed,” Appl. Math. Model., vol. 39, no. 23-24, pp. 7554–7567, Dec. 2015. doi: 10.1016/j.apm.2015.02.054
|
[22] |
Y. Zhang, P. Zhou, and G. Cui, “Multi-model based PSO method for burden distribution matrix optimization with expected burden distribution output behaviors,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1506–1512, Nov. 2019. doi: 10.1109/JAS.2018.7511090
|
[23] |
L. Wang, Y. Zhang, and D. Lv, “Dandelion Optimizer Based Decision Method of Burden Distribution Matrix in Blast Furnace Iron-making Process,” in Proc. IEEE Chinese Control Decision, pp. 239–245, 2023.
|
[24] |
T. Ren and C. Ma, “Optimization of burden distribution process for blast furnace with bell-less top based on genetic algorithm,” Iron and Steel, vol. 51, no. 6, pp. 26–33, Jun. 2016.
|
[25] |
L. Li, “Burden distribution process simulation and optimization for bellless top blast furnace,” M.D. dissertation, College Inf. Electron. Inf. Electr., Shanghai Jiao Tong Univ., Shanghai, China, 2018.
|
[26] |
J. Zhu, Z. Jiang, D. Pan, H. Yu, K. Zhou, and W. Gui, “Burden Surface Shape Modeling and Charging Matrix Optimization for the Blast Furnace Charging Process,” IEEE Trans. Ind. Inf., vol. 20, no. 11, pp. 12705–12716, Nov. 2024. doi: 10.1109/TII.2024.3424215
|
[27] |
C. Ma, T. Ren, and E. Yang, “Stepping ring charging control of blast furnace with bell-less top based on social emotional optimization algorithm,” J. YanShan Univ., vol. 41, no. 1, pp. 21–26, Jan. 2017.
|
[28] |
F. Pettersson, H. Saxén, and J. Hinnelä, “A genetic algorithm evolving charging programs in the ironmaking blast furnace,” Mater. Manuf. Process., vol. 20, no. 3, pp. 351–361, Feb. 2007.
|
[29] |
S. Sun, Z. Yu, S. Zhang, W. Xiao, and Y. Yang, “Reconstruction and classification of 3D burden surfaces based on two model drived data fusion,” Expert Syst. Appl., vol. 215, p. 119406, Apr. 2023. doi: 10.1016/j.eswa.2022.119406
|
[30] |
S. Lou, C. Yang, X. Zhang, H. Zhang, and P. Wu, “From Complexity to Clarity: M2KCSVA’s Nonlinear Temporal Correlation Analysis and Stationary Estimation Pave the Way for Fault Diagnosis in Ironmaking Processes,” IEEE Trans. Ind. Inf., vol. 20, no. 4, pp. 5469–5481, Apr. 2024. doi: 10.1109/TII.2023.3333841
|
[31] |
X. Chen, J. Wei, D. Xu, Q. Hou, and Z. Bai, “3-Dimension imaging system of burden surface with 6-radars array in a blast furnace,” ISIJ Int., vol. 52, no. 11, pp. 2048–2054, Nov. 2012. doi: 10.2355/isijinternational.52.2048
|
[32] |
Z. Yi, Z. Jiang, J. Huang, X. Chen, and W. Gui, “Optimization method of the installation direction of industrial endoscopes for increasing the imaged burden surface area in blast furnaces,” IEEE Trans. Ind. Inf., vol. 18, no. 11, pp. 7729–7740, Nov. 2022. doi: 10.1109/TII.2022.3151747
|
[33] |
Y. Li, Z. Jiang, Z. Yi, D. Pan, B. Yang, and W. Gui, “Image restoration for blast furnace burden surface based on dust multiscattering model,” IEEE Trans. Instrum. Meas., vol. 72, Jun. 2023.
|
[34] |
B. Yang, Z. Jiang, D. Pan, H. Yu, G. Gui, and W. Gui, “LFDT-Fusion: A Latent Feature-guided Diffusion Transformer Model for general image fusion,” Inf. Fusion, vol. 113, p. 102639, Jan. 2025. doi: 10.1016/j.inffus.2024.102639
|
[35] |
J. Huang, Z. Jiang, W. Gui, Z. Yi, D. Pan, and K. Zhou, “Depth estimation from a single image of blast furnace burden surface based on edge defocus tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 9, pp. 6044–6057, Sep. 2022. doi: 10.1109/TCSVT.2022.3155626
|
[36] |
A. Taha and A. Hanbury, “An efficient algorithm for calculating the exact Hausdorff distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 11, pp. 2153–2163, Nov. 2015. doi: 10.1109/TPAMI.2015.2408351
|
[37] |
K. Zhou, Z. Jiang, W. Gui, D. Pan, C. Xu, J. Huang, and J. Zhu, “Motion trajectory mathematical model of burden flow at the top of bell-less blast furnace based on coordinate transformation,” Adv. Powder Technol., vol. 34, no. 1, p. 103893, Jan. 2023. doi: 10.1016/j.apt.2022.103893
|
[38] |
B. Wang, H. Li, Y. Feng, W. Shen, “An adaptive fuzzy penalty method for constrained evolutionary optimization,” Inf. Sci., vol. 571, pp. 358–374, Sep. 2021. doi: 10.1016/j.ins.2021.03.055
|
[39] |
R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, pp. 341–359, Dec. 1997. doi: 10.1023/A:1008202821328
|
[40] |
Y. Liu, W. Chen, Z. Zhan, Y. Lin, Y. Gong, and J. Zhang, “A set-based discrete differential evolution algorithm,” in Proc. IEEE Int. Conf. on Syst. Man Cybern., pp. 1347–1352, 2013.
|
[41] |
J. Zhang and A. Sanderson, “JADE: adaptive differential evolution with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958, Oct. 2009. doi: 10.1109/TEVC.2009.2014613
|
[42] |
R. Schafer, “What is a savitzky-golay filter?,” IEEE Signal Process. Mag., vol. 28, no. 4, pp. 111–117, Jul. 2011. doi: 10.1109/MSP.2011.941097
|
[43] |
S. Lim and H. Haron, “Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions,” in Proc. IEEE Conf. on Open Systems, pp. 41–46, 2013.
|