Citation: | Y. Zhao, M. Li, Z. Liu, L. Liu, S. Wen, and L. Ding, “Neural adaptive sliding-mode control of vehicular cyber-physical systems with uniformly quantized communication data and disturbances,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125186 |
[1] |
D. Pan, D. Ding, X. Ge, Q.-L. Han, and X.-M. Zhang, “Privacy-preserving platooning control of vehicular cyber–physical systems with saturated inputs,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 53, no. 4, pp. 2083–2097, 2023. doi: 10.1109/TSMC.2022.3226901
|
[2] |
X. Ge, Q.-L. Han, X.-M. Zhang, D. Ding, and F. Yang, “Resilient and secure remote monitoring for a class of cyber-physical systems against attacks,” Inf. Sci., vol. 512, pp. 1592–1605, 2020. doi: 10.1016/j.ins.2019.10.057
|
[3] |
M. Ye, “On resilience against cyber-physical uncertainties in distributed Nash equilibrium seeking strategies for heterogeneous games,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–10, 2025.
|
[4] |
Y. Zhao, Z. Liu, and W. S. Wong, “Resilient platoon control of vehicular cyber physical systems under dos attacks and multiple disturbances,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, p. 10, 2022.
|
[5] |
J. Wang, X. Li, J. H. Park, and G. Guo, “Distributed mpc-based string stable platoon control of networked vehicle systems,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 3, pp. 3078–3090, 2023. doi: 10.1109/TITS.2022.3221382
|
[6] |
Y. Ma, Z. Li, R. Malekian, R. Zhang, X. Song, and M. A. Sotelo, “Hierarchical fuzzy logic-based variable structure control for vehicles platooning,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 4, pp. 1329–1340, 2019. doi: 10.1109/TITS.2018.2846198
|
[7] |
Y. Zheng, S. E. Li, and K. Li, “Platooning of connected vehicles with undirected topologies: robustness analysis and distributed H∞ controller synthesis,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 5, pp. 1353–1364, 2018. doi: 10.1109/TITS.2017.2726038
|
[8] |
Y. Zhu, Y. Li, H. Zhu, W. Hua, G. Huang, S. Yu, S. E. Li, and X. Gao, “Joint sliding-mode controller and observer for vehicle platoon subject to disturbance and acceleration failure of neighboring vehicles, ” IEEE Trans. Intell. Veh., vol. 8, no. 3, pp. 2345–2357, 2023.
|
[9] |
Z. Gao, Y. Zhang, and G. Guo, “Fixed-time prescribed performance adaptive fixed-time sliding mode control for vehicular platoons with actuator saturation,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 24176–24198, 2022. doi: 10.1109/TITS.2022.3202365
|
[10] |
X. Ge, Q.-L. Han, J. Wang, and X.-M. Zhang, “Scalable and resilient platooning control of cooperative automated vehicles,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 3595–3608, 2022. doi: 10.1109/TVT.2022.3147371
|
[11] |
M. Pirani, S. Baldi, and K. H. Johansson, “Impact of network topology on the resilience of vehicle platoons,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 15 166–15 177, 2022. doi: 10.1109/TITS.2021.3137826
|
[12] |
L. Ding, J. Li, M. Ye, and Y. Zhao, “Fully distributed resilient cooperative control of vehicular platoon systems under dos attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 937–940, 2022. doi: 10.1109/JAS.2022.105578
|
[13] |
X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Communication resource-efficient vehicle platooning control with various spacing policies,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 362–376, 2024. doi: 10.1109/JAS.2023.123507
|
[14] |
Z. Gao, Z. Sun, and G. Guo, “Automatic adjustable fixed-time prescribed performance control of heterogeneous vehicular platoons with actuator saturation,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 9, pp. 12 736–12 748, 2024. doi: 10.1109/TITS.2024.3383830
|
[15] |
X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, 2022. doi: 10.1109/JAS.2021.1004060
|
[16] |
X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks, ” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1234–1251, 2023.
|
[17] |
X.-M. Zhang, Q.-L. Han, and X. Ge, “Novel stability criteria for linear time-delay systems using lyapunov-krasovskii functionals with a cubic polynomial on time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 77–85, 2021. doi: 10.1109/JAS.2020.1003111
|
[18] |
G. Guo and L. Y. Wang, “Control over medium-constrained vehicular networks with fading channels and random access protocol: A networked systems approach,” IEEE Trans. Veh. Technol., vol. 64, no. 8, pp. 3347–3358, 2015. doi: 10.1109/TVT.2014.2360438
|
[19] |
G. Guo and S. Wen, “Communication scheduling and control of a platoon of vehicles in VANETs,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 6, pp. 1551–1563, 2015.
|
[20] |
Y. Zhao, D. Gong, S. Wen, L. Ding, and G. Guo, “A privacy-preserving-based distributed collaborative scheme for connected autonomous vehicles at multi-lane signal-free intersections, ” IEEE Trans. Intell. Transp. Syst., vol.25, no.7, pp.6824–6835, 2024.
|
[21] |
X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, 2020. doi: 10.1109/JAS.2019.1911651
|
[22] |
M. Fu and L. Xie, “The sector bound approach to quantized feedback control,” IEEE Trans. Auto. Control, vol. 50, no. 11, pp. 1698–1711, 2005. doi: 10.1109/TAC.2005.858689
|
[23] |
X.-M. Zhang, Q.-L. Han, and X. H. Yu, “Survey on recent advances in networked control systems,” IEEE Trans Ind. Inf., vol. 12, no. 5, pp. 1740–1750, 2016. doi: 10.1109/TII.2015.2506545
|
[24] |
P. Yu, L. Ding, Z.-W. Liu, and Z.-H. Guan, “Distributed event-triggered consensus of general linear multi-agent systems with quantised measurements,” IET Control Theo. Appl., vol. 11, no. 3, pp. 308–318, 2017. doi: 10.1049/iet-cta.2016.0425
|
[25] |
L. Ding, W. X. Zheng, and G. Guo, “Network-based practical set consensus of multi-agent systems subject to input saturation,” Automatica, vol. 89, pp. 316–324, 2018. doi: 10.1016/j.automatica.2017.12.001
|
[26] |
J. J. Yan and Y. G. Xia, “Quantized control for networked control systems with packet dropout and unknown disturbances,” Inf. Sci., vol. 354, pp. 86–100, 2016. doi: 10.1016/j.ins.2016.03.013
|
[27] |
Y. Wang, L. He, and C. Huang, “Adaptive time-varying formation tracking control of unmanned aerial vehicles with quantized input,” ISA Trans., vol. 85, pp. 76–83, 2019. doi: 10.1016/j.isatra.2018.09.013
|
[28] |
G. Guo and W. Yue, “Hierarchical platoon control with heterogeneous information feedback,” IET Control Theo. Appl., vol. 5, no. 15, pp. 1766–1781, 2011. doi: 10.1049/iet-cta.2010.0765
|
[29] |
A.-M. Zou and K. D. Kumar, “Neural network-based adaptive output feedback formation control for multi-agent systems,” Nonlinear Dyna., vol. 70, pp. 1283–1296, 2012. doi: 10.1007/s11071-012-0533-9
|
[30] |
Y. Yan and S. H. Yu, “Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization,” Ocean Eng., vol. 151, pp. 322–328, 2018. doi: 10.1016/j.oceaneng.2018.01.034
|
[31] |
Y.-F. Peng, “Adaptive intelligent backstepping longitudinal control of vehicleplatoons using output recurrent cerebellar model articulation controller,” Expert Syst. Appl., vol. 37, no. 3, pp. 2016–2027, 2010. doi: 10.1016/j.eswa.2009.06.055
|
[32] |
T. Gao, T. Li, Y.-J. Liu, and S. Tong, “Iblf-based adaptive neural control of state-constrained uncertain stochastic nonlinear systems,” IEEE Trans. Neu. Net. Learning Syst., vol. 33, no. 12, pp. 7345–7356, 2022. doi: 10.1109/TNNLS.2021.3084820
|
[33] |
Z. Wu, J. Sun, and S. Hong, “Rbfnn-based adaptive event-triggered control for heterogeneous vehicle platoon consensus,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 18 761–18 773, 2022. doi: 10.1109/TITS.2022.3166843
|
[34] |
X. Hu, G. Zhu, Y. Ma, Z. Li, R. Malekian, and M. Á. Sotelo, “Dynamic event-triggered adaptive formation with disturbance rejection for marine vehicles under unknown model dynamics, ” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 5664–5676, 2023.
|
[35] |
M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, 2023. doi: 10.1109/JAS.2022.105428
|
[36] |
Y. Zhu and F. Zhu, “Distributed adaptive longitudinal control for uncertain third-order vehicle platoon in a networked environment,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9183–9197, 2018. doi: 10.1109/TVT.2018.2863284
|
[37] |
Y, Zhu and F, Z hu, “Barrier-function-based distributed adaptive control of nonlinear cavs with parametric uncertainty and full-state constraint,” Transp. Res. C, Emerg. Technol., vol. 104, pp. 249–264, 2019. doi: 10.1016/j.trc.2019.05.002
|
[38] |
G. Guo and D. Li, “Adaptive sliding mode control of vehicular platoons with prescribed tracking performance,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7511–7520, 2019. doi: 10.1109/TVT.2019.2921816
|
[39] |
M. Hu, X. Wang, Y. Bian, D. Cao, and H. Wang, “Disturbance observer-based cooperative control of vehicle platoons subject to mismatched disturbance,” IEEE Trans. Veh. Technol., vol. 8, no. 4, pp. 2748–2758, 2023.
|
[40] |
X. Guo, J. Wang, F. Liao, and R. S. H. Teo, “Distributed adaptive integrated-sliding-mode controller synthesis for string stability of vehicle platoons,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 9, pp. 2419–2429, 2016. doi: 10.1109/TITS.2016.2519941
|
[41] |
H. Ren, R. Liu, Z. Cheng, H. Ma, and H. Li, “Data-driven event-triggered control for nonlinear multi-agent systems with uniform quantization,” IEEE Trans. Circ. Syst. Ⅱ: Expr. Briefs, vol. 71, no. 2, pp. 712–716, 2024.
|
[42] |
S. Öncü, J. Ploeg, N. Van de Wouw, and H. Nijmeijer, “Cooperative adaptive cruise control: Network-aware analysis of string stability,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 4, pp. 1527–1537, 2014. doi: 10.1109/TITS.2014.2302816
|
[43] |
J.-W. Kwon and D. Chwa, “Adaptive bidirectional platoon control using a coupled sliding mode control method,” IEEE Trans. Veh. Technol., vol. 15, no. 5, pp. 2040–2048, 2014.
|
[44] |
A. Ghasemi, R. Kazemi, and S. Azadi, “Stable decentralized control of a platoon of vehicles with heterogeneous information feedback,” IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4299–4308, 2013. doi: 10.1109/TVT.2013.2253500
|
[45] |
S. Wen and G. Guo, “Sampled-data control for connected vehicles with markovian switching topologies and communication delay,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 7, pp. 2930–2940, 2020.
|
[46] |
M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Ecological vehicle control on roads with up-down slopes,” IEEE Transa. Intell. Transp. Syst., vol. 12, no. 3, pp. 783–794, 2011. doi: 10.1109/TITS.2011.2112648
|
[47] |
P. Seiler and S. Lee, “Application of nonlinear control to a collision avoidance system, ” in Proc. 5th World Cong. Intell. Transp. Syst., Seoul, Korea (South), 1998, pp.12–16.
|
[48] |
K. Yi and J. Chung, “Nonlinear brake control for vehicle cw/ca systems,” IEEE/ASME trans. mech., vol. 6, no. 1, pp. 17–25, 2001. doi: 10.1109/3516.914387
|