Citation: | H. Fang, S. Yuan, H. Ren, S. He, and S. S. Cheng, “ADAPT: A model-free adaptive optimal control for continuum robots,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125183 |
[1] |
M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. John Wiley & Sons, 2020.
|
[2] |
R. J. Webster Ⅲ and B. A. Jones, “Design and kinematic modeling of constant curvature continuum robots: A review,” The Int. Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010. doi: 10.1177/0278364910368147
|
[3] |
A. A. Alqumsan, S. Khoo, and M. Norton, “Robust control of continuum robots using Cosserat rod theory,” Mechanism and Machine Theory, vol. 131, pp. 48–61, 2019. doi: 10.1016/j.mechmachtheory.2018.09.011
|
[4] |
J. Wang, J. Xue, S. Yuan, J. Tan, S. Song, and M. Q.-H. Meng, “Kine-matic modeling of magnetically-actuated robotic catheter in nonlinearly-coupled multi-field,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8189–8196, 2021. doi: 10.1109/LRA.2021.3104620
|
[5] |
F. Xu, H. Wang, Z. Liu, W. Chen, and Y. Wang, “Visual servoing pushing control of the soft robot with active pushing force regulation,” Soft Robotics, vol. 9, no. 4, pp. 690–704, 2022. doi: 10.1089/soro.2020.0178
|
[6] |
Z. Wang, T. Wang, B. Zhao, Y. He, Y. Hu, B. Li, P. Zhang, and M. Q.-H. Meng, “Hybrid adaptive control strategy for continuum surgical robot under external load,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1407–1414, 2021. doi: 10.1109/LRA.2021.3057558
|
[7] |
M. Khadem, J. O’Neill, Z. Mitros, L. Da Cruz, and C. Bergeles, “Autonomous steering of concentric tube robots via nonlinear model predictive control,” IEEE Trans. Robotics, vol. 36, no. 5, pp. 1595–1602, 2020. doi: 10.1109/TRO.2020.2991651
|
[8] |
M. S. Xavier, A. J. Fleming, and Y. K. Yong, “Nonlinear estimation and control of bending soft pneumatic actuators using feedback linearization and ukf,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 4, pp. 1919–1927, 2022. doi: 10.1109/TMECH.2022.3155790
|
[9] |
P. Xiang, J. Zhang, D. Sun, K. Qiu, Q. Fang, X. Mi, Y. Wang, R. Xiong, and H. Lu, “Learning-based high-precision force estimation and compliant control for small-scale continuum robot,” IEEE Trans. Automation Science and Engineering, vol. 21, no. 4, pp. 5389–5401, 2024. doi: 10.1109/TASE.2023.3311179
|
[10] |
A. Ghoul, K. Kara, M. Benrabah, and M. L. Hadjili, “Optimized nonlinear sliding mode control of a continuum robot manipulator,” Journal of Control, Automation and Electrical Systems, vol. 33, no. 5, pp. 1355–1363, 2022. doi: 10.1007/s40313-022-00914-1
|
[11] |
X. Shao, P. Pustina, M. Stölzle, G. Sun, A. De Luca, L. Wu, and C. Della Santina, “Model-based control for soft robots with system uncertainties and input saturation,” IEEE Trans. Industrial Electronics, vol. 71, no. 7, pp. 7435–7444, 2024. doi: 10.1109/TIE.2023.3303636
|
[12] |
C. Frazelle, J. Rogers, I. Karamouzas, and I. Walker, “Optimizing a continuum manipulator’s search policy through model-free reinforcement learning,” in 2020 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 5564–5571.
|
[13] |
G. Ji, J. Yan, J. Du, W. Yan, J. Chen, Y. Lu, J. Rojas, and S. S. Cheng, “Towards safe control of continuum manipulator using shielded multiagent reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7461–7468, 2021. doi: 10.1109/LRA.2021.3097660
|
[14] |
P. Schegg, E. Menager, x E. Khairallah, D. Marchal, J. Dequidt, P. Preux, and C. Duriez, “Sofagym: An open platform for reinforcement learning based on soft robot simulations,” Soft Robotics, vol. 10, no. 2, pp. 410–430, 2023. doi: 10.1089/soro.2021.0123
|
[15] |
D. Jakes, Z. Ge, and L. Wu, “Model-less active compliance for continuum robots using recurrent neural networks,” in 2019 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 2167–2173.
|
[16] |
N. Tan, P. Yu, Z. Zhong, and Y. Zhang, “Data-driven control for continuum robots based on discrete zeroing neural networks,” IEEE Trans. Industrial Informatics, 2022.
|
[17] |
D. Wu, X. T. Ha, Y. Zhang, M. Ourak, G. Borghesan, K. Niu, F. Trauzettel, J. Dankelman, A. Menciassi, and E. Vander Poorten, “Deep-learning-based compliant motion control of a pneumatically-driven robotic catheter,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 8853–8860, 2022. doi: 10.1109/LRA.2022.3186497
|
[18] |
Y. Yang, J. Han, Z. Liu, Z. Zhao, and K.-S. Hong, “Modeling and adaptive neural network control for a soft robotic arm with prescribed motion constraints,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 2, pp. 501–511, 2023. doi: 10.1109/JAS.2023.123213
|
[19] |
G. G. Rigatos, “Model-based and model-free control of flexible-link robots: A comparison between representative methods,” Applied Mathematical Modelling, vol. 33, no. 10, pp. 3906–3925, 2009. doi: 10.1016/j.apm.2009.01.012
|
[20] |
M. Jin, J. Lee, and N. G. Tsagarakis, “Model-free robust adaptive control of humanoid robots with flexible joints,” IEEE Trans. Industrial Electronics, vol. 64, no. 2, pp. 1706–1715, 2016.
|
[21] |
H. Abouaïssa and S. Chouraqui, “On the control of robot manipulator: A model-free approach,” Journal of Computational Science, vol. 31, pp. 6–16, 2019. doi: 10.1016/j.jocs.2018.12.011
|
[22] |
K. He, C. Dong, and Q. Wang, “Active disturbance rejection control for uncertain nonlinear systems with sporadic measurements,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 5, pp. 893–906, 2022. doi: 10.1109/JAS.2022.105566
|
[23] |
R. Moradi, R. Berangi, and B. Minaei, “A survey of regularization strategies for deep models,” Artificial Intelligence Review, vol. 53, pp. 3947–3986, 2020. doi: 10.1007/s10462-019-09784-7
|
[24] |
T. An, Y. Wang, G. Liu, Y. Li, and B. Dong, “Cooperative game-based approximate optimal control of modular robot manipulators for human–robot collaboration,” IEEE Trans. Cybernetics, vol. 53, no. 7, pp. 4691–4703, 2023. doi: 10.1109/TCYB.2023.3277558
|
[25] |
P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. Del Prete, “Optimization-based control for dynamic legged robots,” IEEE Trans. Robotics, doi: 10.1109/TRO.2023.3324580, 2023.
|
[26] |
F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons, 2012.
|
[27] |
Y. Yang, H. Modares, K. G. Vamvoudakis, and F. L. Lewis, “Cooperative finitely excited learning for dynamical games,” IEEE Trans. Cybernetics, vol. 54, no. 2, pp. 797–810, 2023.
|
[28] |
F. Boyer, V. Lebastard, F. Candelier, F. Renda, and M. Alamir, “Statics and dynamics of continuum robots based on cosserat rods and optimal control theories,” IEEE Trans. Robotics, vol. 39, no. 2, pp. 1544–1562, 2022.
|
[29] |
M. Samadi Khoshkho, Z. Samadikhoshkho, and M. G. Lipsett, “Distilled neural state-dependent riccati equation feedback controller for dynamic control of a cable-driven continuum robot,” Int. Journal of Advanced Robotic Systems, vol. 20, no. 3, p. 17298806231174737, 2023.
|
[30] |
D. A. Haggerty, M. J. Banks, E. Kamenar, A. B. Cao, P. C. Curtis, I. Mezic, x and E. W. Hawkes, “Control of soft robots with inertial dynamics,” Science robotics, vol. 8, no. 81, p. eadd6864, 2023. doi: 10.1126/scirobotics.add6864
|
[31] |
D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, “Data-driven control of soft robots using koopman operator theory,” IEEE Trans. Robotics, vol. 37, no. 3, pp. 948–961, 2020.
|
[32] |
J. Chen, Y. Dang, and J. Han, “Offset-free model predictive control of a soft manipulator using the koopman operator,” Mechatronics, vol. 86, p. 102871, 2022. doi: 10.1016/j.mechatronics.2022.102871
|
[33] |
D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, “Koopman-based control of a soft continuum manipulator under variable loading conditions,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6852–6859, 2021. doi: 10.1109/LRA.2021.3095268
|
[34] |
R. Luus, “Application of dynamic programming to high-dimensional non-linear optimal control problems,” Int. Journal of Control, vol. 52, no. 1, pp. 239–250, 1990. doi: 10.1080/00207179008953533
|
[35] |
D. P. Bertsekas, “Dynamic programming and optimal control,” Belmont, MA: Athena Scientific, 2011.
|
[36] |
L. Dong, Y. Tang, H. He, and C. Sun, “An event-triggered approach for load frequency control with supplementary adp,” IEEE Trans. Power Systems, vol. 32, no. 1, pp. 581–589, 2016.
|
[37] |
Z. Lin, J. Duan, S. E. Li, H. Ma, Y. Yin, and B. Cheng, “Continuous-time finite-horizon adp for automated vehicle controller design with high efficiency,” in 2020 3rd Int. Conf. on Unmanned Systems (ICUS). IEEE, 2020, pp. 978–984.
|
[38] |
H. Yang, Q. Hu, H. Dong, and X. Zhao, “ADP-based spacecraft attitude control under actuator misalignment and pointing constraints,” IEEE Trans. Industrial Electronics, vol. 69, no. 9, pp. 9342–9352, 2021.
|
[39] |
S. Li, L. Ding, H. Gao, Y.-J. Liu, L. Huang, and Z. Deng, “ADP-based online tracking control of partially uncertain time-delayed nonlinear system and application to wheeled mobile robots,” IEEE Trans. Cybernetics, vol. 50, no. 7, pp. 3182–3194, 2019.
|
[40] |
T. Sun and X.-M. Sun, “An adaptive dynamic programming scheme for nonlinear optimal control with unknown dynamics and its application to turbofan engines,” IEEE Trans. Industrial Informatics, vol. 17, no. 1, pp. 367–376, 2020.
|
[41] |
Z. Li, L. Wu, Y. Xu, S. Moazeni, and Z. Tang, “Multi-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: A data-driven MPC-ADP approach,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 213–226, 2021.
|
[42] |
Q. Wei, Z. Liao, R. Song, P. Zhang, Z. Wang, and J. Xiao, “Self-learning optimal control for ice-storage air conditioning systems via data-based adaptive dynamic programming,” IEEE Trans. Industrial Electronics, vol. 68, no. 4, pp. 3599–3608, 2020.
|
[43] |
D. Wang, M. Zhao, M. Ha, and J. Ren, “Neural optimal tracking control of constrained nonaffine systems with a wastewater treatment application,” Neural Networks, vol. 143, pp. 121–132, 2021. doi: 10.1016/j.neunet.2021.05.027
|
[44] |
Y. Yang, B. Kiumarsi, H. Modares, and C. Xu, “Model-free λ-policy iteration for discrete-time linear quadratic regulation,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 2, pp. 635–649, 2021.
|
[45] |
W. Xue, B. Lian, J. Fan, P. Kolaric, T. Chai, and F. L. Lewis, “Inverse reinforcement Q-learning through expert imitation for discrete-time systems,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 5, pp. 2386–2399, 2023. doi: 10.1109/TNNLS.2021.3106635
|
[46] |
Z. Xia, M. Hu, W. Dai, H. Yan, and X. Ma, “Q-learning-based multi-rate optimal control for process industries,” IEEE Trans. Circuits and Systems Ⅱ: Express Briefs, vol. 70, no. 6, pp. 2006–2010, 2022.
|
[47] |
C. Zheng, Y. An, Z. Wang, H. Wu, X. Qin, B. Eynard, and Y. Zhang, “Hybrid offline programming method for robotic welding systems,” Robotics and Computer-Integrated Manufacturing, vol. 73, p. 102238, 2022. doi: 10.1016/j.rcim.2021.102238
|
[48] |
J. Fitzgerald, R. M. A. Azad, and C. Ryan, “A bootstrapping approach to reduce over-fitting in genetic programming,” in Proc. the 15th annual conference companion on Genetic and evolutionary computation, 2013, pp. 1113–1120.
|
[49] |
Y. Yang, Y. Pan, C.-Z. Xu, and D. C. Wunsch, “Hamiltonian-driven adaptive dynamic programming with efficient experience replay,” IEEE Trans. Neural Networks and Learning Systems, 2022.
|
[50] |
V. N. Afanasiev, V. Kolmanovskii, and V. R. Nosov, Mathematical Theory of Control Systems Design. Springer Science & Business Media, 2013, vol. 341.
|
[51] |
T. Bian, Y. Jiang, and Z.-P. Jiang, “Adaptive dynamic programming and optimal control of nonlinear nonaffine systems,” Automatica, vol. 50, no. 10, pp. 2624–2632, 2014. doi: 10.1016/j.automatica.2014.08.023
|
[52] |
R. Dreyfus, Q. Boehler, and B. J. Nelson, “A simulation framework for magnetic continuum robots,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8370–8376, 2022. doi: 10.1109/LRA.2022.3187249
|
[53] |
A. J. Petruska, J. Edelmann, and B. J. Nelson, “Model-based calibration for magnetic manipulation,” IEEE Trans. Magnetics, vol. 53, no. 7, pp. 1–6, 2017.
|
[54] |
H. Fang, Y. Tu, H. Wang, S. He, F. Liu, Z. Ding, and S. S. Cheng, “Fuzzy-based adaptive optimization of unknown discrete-time nonlinear markov jump systems with off-policy reinforcement learning,” IEEE Trans. Fuzzy Systems, vol. 30, no. 12, pp. 5276–5290, 2022. doi: 10.1109/TFUZZ.2022.3171844
|
[55] |
O. Qasem, W. Gao, and K. G. Vamvoudakis, “Adaptive optimal control of continuous-time nonlinear affine systems via hybrid iteration,” Automatica, vol. 157, p. 111261, 2023. doi: 10.1016/j.automatica.2023.111261
|