Citation: | H. Xiao, X. Lai, Q. Meng, J. She, E. Fukushima, and M. Wu, “Comprehensive dynamic model of vertical pneumatic bellows actuator system considering bidirectional asymmetric hysteresis,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125162 |
[1] |
F. Xu and H. Wang, “Soft robotics: Morphology and morphology-inspired motion strategy,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1500–1522, Sep. 2021. doi: 10.1109/JAS.2021.1004105
|
[2] |
Z. Li, Z. Li, H. Xu, X. Zhang, and C.-Y. Su, “Development of a butterfly fractional-order backlash-like hysteresis model for dielectric elastomer actuators,” IEEE Trans. Ind. Electron., vol. 70, no. 2, pp. 1794–1801, Feb. 2023. doi: 10.1109/TIE.2022.3163553
|
[3] |
J. Wu, W. Ye, Y. Wang, and C.-Y. Su, “Modeling of photo-responsive liquid crystal elastomer actuators,” Inf. Sci., vol. 560, pp. 441–455, Jun. 2021. doi: 10.1016/j.ins.2021.01.009
|
[4] |
Q. Xie, T. Wang, and S. Zhu, “Simplified dynamical model and experimental verification of an underwater hydraulic soft robotic arm,” Smart Mater. Struct., vol. 31, no. 7, p. 075011, Jul. 2022. doi: 10.1088/1361-665X/ac736f
|
[5] |
A. H. Khan, Z. Shao, S. Li, Q. Wang, and N. Guan, “Which is the best PID variant for pneumatic soft robots? An experimental study,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 451–460, Mar. 2020. doi: 10.1109/JAS.2020.1003045
|
[6] |
Y. Zhang, H. Liu, T. Ma, L. Hao, and Z. Li, “A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads,” Mech. Syst. Signal Process., vol. 148, p. 107133, Feb. 2021. doi: 10.1016/j.ymssp.2020.107133
|
[7] |
J. Wu, W. Ye, Y. Wang, and C.-Y. Su, “Modeling based on a two-step parameter identification strategy for liquid crystal elastomer actuator considering dynamic phase transition process,” IEEE Trans. Cybern., vol. 53, no. 7, pp. 4423–4434, Jul. 2023. doi: 10.1109/TCYB.2022.3179433
|
[8] |
J. Sun, W. Liao, and Z. Yang, “Additive manufacturing of liquid crystal elastomer actuators based on knitting technology,” Adv. Mater., vol. 35, no. 36, p. 2302706, Sep. 2023. doi: 10.1002/adma.202302706
|
[9] |
Y. Zhang, Y. Wang, J. Wu, Q. Meng, and C.-Y. Su, “Adaptive control method for conically shaped dielectric elastomer actuator with different loads,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 2613–2621, Jul. 2024. doi: 10.1109/TASE.2023.3265707
|
[10] |
G.-Y. Gu, U. Gupta, J. Zhu, L.-M. Zhu, and X. Zhu, “Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1263–1271, Oct. 2017. doi: 10.1109/TRO.2017.2706285
|
[11] |
J. Ciambella and G. Tomassetti, “A form-finding strategy for magneto-elastic actuators,” Int. J. Nonlinear Mech., vol. 119, p. 103297, Mar. 2020. doi: 10.1016/j.ijnonlinmec.2019.103297
|
[12] |
D. Kumar, V. Yadav, and S. Sarangi, “Modeling and analysis of an electro-magneto-elastic rotating cylindrical tube actuator,” J. Intell. Mater. Syst. Struct., vol. 33, no. 14, pp. 1862–1876, Aug. 2022. doi: 10.1177/1045389X211072188
|
[13] |
J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Adv. Mater., vol. 30, no. 29, p. 1707035, Jul. 2018. doi: 10.1002/adma.201707035
|
[14] |
S. Shakiba, M. Ourak, E. V. Poorten, M. Ayati, and A. Yousefi-Koma, “Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter,” Mech. Syst. Signal Process., vol. 154, p. 107532, Jun. 2021. doi: 10.1016/j.ymssp.2020.107532
|
[15] |
X. Wang, Q. Zhang, D. Shen, and J. Chen, “A novel rescue robot: Hybrid soft and rigid structures for narrow space searching,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Dali, China, 2019, pp. 2207–2213.
|
[16] |
Y. Cao and J. Huang, “Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1478–1488, Nov. 2020. doi: 10.1109/JAS.2020.1003351
|
[17] |
X. Zhang, N. Sun, G. Liu, T. Yang, and Y. Fang, “Hysteresis compensation-based intelligent control for pneumatic artificial muscle-driven humanoid robot manipulators with experiments verification,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 2538–2551, Jul. 2024. doi: 10.1109/TASE.2023.3263535
|
[18] |
H. Ru, J. Huang, W. Chen, and C. Xiong, “Modeling and identification of rate-dependent and asymmetric hysteresis of soft bending pneumatic actuator based on evolutionary firefly algorithm,” Mech. Mach. Theory, vol. 181, p. 105169, Mar. 2023. doi: 10.1016/j.mechmachtheory.2022.105169
|
[19] |
S. Zhao, Z. Yan, Q. Meng, H. Xiao, X. Lai, and M. Wu, “Modified three-element modeling and robust tracking control for a planar pneumatic soft actuator,” IEEE Trans. Ind. Electron., vol. 70, no. 9, pp. 9237–9247, Sep. 2023. doi: 10.1109/TIE.2022.3206693
|
[20] |
H. Xiao, J. Wu, W. Ye, and Y. Wang, “Dynamic modeling for dielectric elastomer actuators based on LSTM deep neural network,” in Proc. 5th Int. Conf. Advanced Robotics and Mechatronics, Shenzhen, China, 2020, pp. 119–124.
|
[21] |
H. Ru, J. Huang, and B. Wang, “ESN-based control of bending pneumatic muscle with asymmetric and rate-dependent hysteresis,” in Proc. 4th Int. Conf. Neural Computing for Advanced Applications, Hefei, China, 2023, pp. 3–17.
|
[22] |
M. A. Vasquez-Beltran, B. Jayawardhana, and R. F. Peletier, “Modeling and analysis of duhem hysteresis operators with butterfly loops,” IEEE Trans. Autom. Control, vol. 68, no. 10, pp. 5977–5990, Oct. 2023. doi: 10.1109/TAC.2023.3238177
|
[23] |
M. Ismail, F. Ikhouane, and J. Rodellar, “The hysteresis bouc-wen model, a survey,” Arch. Comput. Methods Eng., vol. 16, no. 2, pp. 161–188, Jun. 2009. doi: 10.1007/s11831-009-9031-8
|
[24] |
T. Kosaki and M. Sano, “Control of a parallel manipulator driven by pneumatic muscle actuators based on a hysteresis model,” J. Environ. Eng., vol. 6, no. 2, pp. 316–327, Mar. 2011. doi: 10.1299/jee.6.316
|
[25] |
H. Xiao, Q. Meng, X. Lai, Y. Wang, J. She, E. F. Fukushima, and M. Wu, “Design, performance analysis and applications of pneumatic bellows actuator for building block soft robots,” Inf. Sci., vol. 676, p. 120814, Aug. 2024. doi: 10.1016/j.ins.2024.120814
|
[26] |
Y. Yang, J. Han, Z. Liu, Z. Zhao, and K.-S. Hong, “Modeling and adaptive neural network control for a soft robotic arm with prescribed motion constraints,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 501–511, Feb. 2023. doi: 10.1109/JAS.2023.123213
|
[27] |
H. Ru, Y. Yang, B. Wang, and J. Huang, “Model predictive control for a bending pneumatic muscle based on an online modified generalized prandtl-ishlinskii model,” Neural Comput. Appl., vol. 36, no. 20, pp. 12371–12383, Jul. 2024. doi: 10.1007/s00521-024-09666-2
|
[28] |
M. Al Saaideh and M. Al Janaideh, “On prandtl-ishlinskii hysteresis modeling of a loaded pneumatic artificial muscle,” ASME Lett. Dyn. Syst. Control, vol. 2, no. 3, p. 031008, Jul. 2022. doi: 10.1115/1.4054779
|
[29] |
K. Xu, Z. Zhang, and J. Mao, “Modeling of stress dependent hysteresis nonlinearity based on fuzzy tree for GMA,” in Proc. IEEE Int. Conf. Automation and Logistics, Qingdao, China, 2008, pp. 331–335. (查阅网上资料, 未能确认作者信息, 请确认)
|
[30] |
X. Zhang, Y. Tan, M. Su, and Y. Xie, “Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators,” Phys. B: Condens. Matter, vol. 405, no. 12, pp. 2687–2693, Jun. 2010. doi: 10.1016/j.physb.2010.03.050
|
[31] |
P.-K. Wong, Q. Xu, C.-M. Vong, and H.-C. Wong, “Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1988–2001, Apr. 2012. doi: 10.1109/TIE.2011.2166235
|
[32] |
H. Xiao, Q.-X. Meng, X.-Z. Lai, Z. Yan, S.-Y. Zhao, and M. Wu, “Design and trajectory tracking control of a novel pneumatic bellows actuator,” Nonlinear Dyn., vol. 111, no. 4, pp. 3173–3190, Feb. 2023. doi: 10.1007/s11071-022-07979-2
|
[33] |
Y. Zhang, J. Wu, P. Huang, C.-Y. Su, and Y. Wang, “Inverse dynamics modelling and tracking control of conical dielectric elastomer actuator based on GRU neural network,” Eng. Appl. Artif. Intell., vol. 118, p. 105668, Feb. 2023. doi: 10.1016/j.engappai.2022.105668
|
[34] |
H. Xiao, J. Wu, W. Ye, and Y. Wang, “Dynamic modeling of dielectric elastomer actuators based on thermodynamic theory,” Mech. Adv. Mater. Struct., vol. 29, no. 11, pp. 1543–1552, Nov. 2022. doi: 10.1080/15376494.2020.1829757
|
[35] |
S. Xie, J. Mei, H. Liu, and Y. Wang, “Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified Prandtl-Ishlinskii model,” Mech. Mach. Theory, vol. 120, pp. 213–224, Feb. 2018. doi: 10.1016/j.mechmachtheory.2017.07.016
|
[36] |
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, no. 3, p. e623, Jul. 2021.
|