A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Ricardo L. A. Ribeiro, Reuben P. R. Sousa, Alexandre C. Oliveira, Antonio M. N. Lima, and Q.-L. Han, “Online estimation of DC-link capacitor parameters of three-level NPC converters using inherent signals analysis,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125159
Citation: Ricardo L. A. Ribeiro, Reuben P. R. Sousa, Alexandre C. Oliveira, Antonio M. N. Lima, and Q.-L. Han, “Online estimation of DC-link capacitor parameters of three-level NPC converters using inherent signals analysis,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125159

Online Estimation of DC-link Capacitor Para-meters of Three-Level NPC Converters Using Inherent Signals Analysis

doi: 10.1109/JAS.2025.125159
More Information
  • This paper presents a method for estimating the parameters of DC-link capacitors in three-level NPC voltage source inverters (3L-NPC-VSI) used in grid-tied systems. The technique uses the signals generated by the intermodulation caused by the PWM strategy and converter topology interaction to estimate the capacitor parameters of the converter DC-link. It utilizes an observer-based structure consisting of a recursive noninteger sliding discrete Fourier transform (rnSDFT) and an RLS filter improved with a forgetting factor (oSDFT-RLS) to accurately estimate the capacitance and equivalent series resistance (ESR). Importantly, this method does not require additional sensors beyond those already installed in off-the-shelf 3L-NPC-VSI systems, ensuring its noninvasiveness. Furthermore, the oSDFT-RLS estimates capacitor parameters in the time-frequency domain, enabling the tracking of capacitor degradation and predicting potential faults. Experimental results from the laboratory setup demonstrate the effectiveness of the proposed condition monitoring method.

     

  • loading
  • [1]
    F. Blaabjerg, Y. Yang, K. A. Kim, and J. Rodriguez, “Power electronics technology for large-scale renewable energy generation,” Proc. IEEE, vol. 111, no. 4, pp. 335–355, 2023. doi: 10.1109/JPROC.2023.3253165
    [2]
    L. P. A. Nathan, R. R. Hemamalini, R. J. R. Jeremiah, and P. Partheeban, “Review of condition monitoring methods for capacitors used in power converters,” Microelectron. Reliab., vol. 145, p. 115003, 2023. doi: 10.1016/j.microrel.2023.115003
    [3]
    Z. Zhao, P. Davari, W. Lu, H. Wang, and F. Blaabjerg, “An overview of condition monitoring techniques for capacitors in dc-link applications,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 3692–3716, 2021. doi: 10.1109/TPEL.2020.3023469
    [4]
    M. Ghadrdan, B. Abdi, S. Peyghami, H. Mokhtari, and F. Blaabjerg, “On-line condition monitoring system for dc-link capacitor of back-to-back converters using large-signal transients,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 11, no. 1, pp. 1132–1142, 2023. doi: 10.1109/JESTPE.2022.3163012
    [5]
    T. Electronics, “Aluminum electrolytic capacitors,” 12 2019, 2022-03-02. [Online]. Available: https://www.tdk-electronics.tdk.com/download/
    [6]
    M. K. P. M. Ramees and M. W. Ahmad, “Advances in capacitor health monitoring techniques for power converters: A review,” IEEE Access, vol. 11, pp. 133 540–133 576, 2023. doi: 10.1109/ACCESS.2023.3336986
    [7]
    Y. Gupta, M. W. Ahmad, S. Narale, and S. Anand, “Health estimation of individual capacitors in a bank with reduced sensor requirements,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7250–7259, 2019. doi: 10.1109/TIE.2018.2880725
    [8]
    Y. Wu and X. Du, “A VEN condition monitoring method of dc-link capacitors for power converters,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1296–1306, 2019. doi: 10.1109/TIE.2018.2835393
    [9]
    M. Asoodar, M. Nahalparvari, C. Danielsson, and H.-P. Nee, “Practical online condition monitoring of dc-link capacitors in modular multilevel converters: A comparative approach,” IEEE Open J. Power Electron., vol. 5, pp. 1093–1106, 2024. doi: 10.1109/OJPEL.2024.3387829
    [10]
    D. Ronanki and S. S. Williamson, “Failure prediction of submodule capacitors in modular multilevel converter by monitoring the intrinsic capacitor voltage fluctuations,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2585–2594, 2020. doi: 10.1109/TIE.2019.2912771
    [11]
    X. Dai, L. Zhao, L. Han, Y. Sun, and J. Chen, “A high-accuracy capacitor condition monitoring scheme at low sample frequency based on improved current reconstruction method,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 12, no. 2, pp. 2281–2291, 2024. doi: 10.1109/JESTPE.2024.3370616
    [12]
    K. Laadjal, M. Sahraoui, and A. J. M. Cardoso, “On-line fault diagnosis of dc-link electrolytic capacitors in boost converters using the stft technique,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 6303–6312, 2021. doi: 10.1109/TPEL.2020.3040499
    [13]
    D. Xiang, Y. Zheng, H. Li, Y. Gu, N. Zhao, and J. Zheng, “Online esr monitoring of dc-link capacitor in voltage-source-converter using damping characteristic of switching ringings,” IEEE Trans. Power Electron., vol. 36, no. 7, pp. 7429–7441, 2021. doi: 10.1109/TPEL.2020.3042218
    [14]
    B. Guan and X. Zhen, “Noninvasive online capacitor monitoring method for three-level converter based on active neutral-point current adjustment,” IEEE Trans. Ind. Electron., vol. 71, no. 5, pp. 4320–4329, 2024. doi: 10.1109/TIE.2023.3283714
    [15]
    R. L. A. Ribeiro, A. Sangwongwanich, D. K. Alves, F. Blaabjerg, and T. O. A. Rocha, “Wavelet-based estimation method for online condition monitoring of dc-link capacitors of distributed energy resources,” Int. Journ. of Electric. Power and Energy Syst., vol. 151, p. 109141, Apr. 2023. doi: 10.1016/j.ijepes.2023.109141
    [16]
    H. Xia, Y. Zhang, M. Chen, W. Lai, D. Luo, and H. Wang, “Capacitor condition monitoring for modular multilevel converter based on charging transient voltage analysis,” IEEE Trans. Power Electron., vol. 38, no. 3, pp. 3847–3856, 2023. doi: 10.1109/TPEL.2022.3219291
    [17]
    Z. Zhao, W. Lu, P. Davari, X. Du, H. H.-C. Iu, and F. Blaabjerg, “An online parameters monitoring method for output capacitor of buck converter based on large-signal load transient trajectory analysis,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 4, pp. 4004–4015, 2021. doi: 10.1109/JESTPE.2020.2964068
    [18]
    M. Zhu, F. Shi, L. Wang, J. Chen, Y. Yan, X. Xia, and H. Li, “Measuring the dissipation factor of capacitive equipment under damped ac voltage,” IEEE Trans. Instrum. Meas., vol. 73, pp. 1–12, 2024. doi: 10.1109/TIM.2024.3350134
    [19]
    Z. Yang, L. Xi, Y. Zhang, and X. Chen, “An online parameter identification method for non-solid aluminum electrolytic capacitors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 8, pp. 3475–3479, 2022. doi: 10.1109/TCSII.2022.3158938
    [20]
    R. Lyons and C. Howard, “Improvements to the sliding discrete fourier transform algorithm[tips and tricks],” IEEE Signal Process. Mag., vol. 38, no. 4, pp. 119–127, 2021. doi: 10.1109/MSP.2021.3075416
    [21]
    A. Chauhan and K. M. Singh, “Recursive sliding dft algorithms: A review,” Digit. Signal Process., vol. 127, DOI 10.1016/j.dsp.2022.103560, Apr. 2022.
    [22]
    G. N. Lopes, V. A. Lacerda, J. C. M. Vieira, and D. V. Coury, “Analysis of signal processing techniques for high impedance fault detection in distribution systems,” IEEE Trans. Power Del., vol. 36, no. 6, pp. 3438–3447, 2021. doi: 10.1109/TPWRD.2020.3042734
    [23]
    M. Zhu, Y. Liu, M. Huang, Z. Li, and X. Zha, “A digital twin system of capacitive dc bank using rogowski coil to monitor individual capacitors,” IEEE Trans. Power Electron., vol. 38, no. 8, pp. 9251–9260, 2023. doi: 10.1109/TPEL.2023.3271848
    [24]
    F. Yüce and M. Hiller, “Condition monitoring of power electronic systems through data analysis of measurement signals and control output variables,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 5, pp. 5118–5131, 2022. doi: 10.1109/JESTPE.2021.3125788
    [25]
    M. V. Kjaer, H. Wang, and F. Blaabjerg, “End-of-life detection of power electronic converters by exploiting an application-level health precursor,” IEEE Open J. Power Electron., vol. 3, pp. 549–559, 2022. doi: 10.1109/OJPEL.2022.3196134
    [26]
    W. Zhou, M. Wang, Q. Wu, L. Xi, K. Xiao, K. P. Bhat, and C. Chen, “Accelerated life testing method of metallized film capacitors for inverter applications,” IEEE Trans. Transport. Electrific., vol. 7, no. 1, pp. 37–49, 2021. doi: 10.1109/TTE.2020.3021614
    [27]
    B. Sun, X. Fan, C. Qian, and G. Zhang, “PoF-simulation-assisted reliability prediction for electrolytic capacitor in led drivers,” IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6726–6735, 2016. doi: 10.1109/TIE.2016.2581156
    [28]
    X. Wang, B. Jiang, S. X. Ding, N. Lu, and Y. Li, “Extended relevance vector machine-based remaining useful life prediction for dc-link capacitor in high-speed train,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9746–9755, 2022. doi: 10.1109/TCYB.2020.3035796
    [29]
    L. Hu, Z. Wang, H. Li, P. Wu, J. Mao, and N. Zeng, “l-darts: Light-weight differentiable architecture search with robustness enhancement strategy,” Knowl.-Based Syst., vol. 15, DOI 10.1016/j.knosys.2024.111466, Mar. 2024.
    [30]
    T. He, Y. Liu, Y.-S. Ong, X. Wu, and X. Luo, “Polarized message-passing in graph neural networks,” J. Artif. Intell., vol. 331, DOI 10.1016/j.artint.2024.104129, Mar. 2024. doi: 10.1016/j.artint.2024.104129
    [31]
    C. Wang, Z. Li, X. Si, and H. Xin, “Control of neutral-point voltage in three-phase four-wire three-level npc inverter based on the disassembly of zero level,” CPSS Trans. Power Electron. Appl., vol. 3, no. 3, pp. 213–222, 2018. doi: 10.24295/CPSSTPEA.2018.00021
    [32]
    T. Tyagi and S. Parasuraman, “Finer granularity dft bins with moving window for capacitance sensing,” IEEE Trans. Ind. Informat., vol. 17, no. 1, pp. 504–513, 2020. doi: 10.1109/TII.2020.2970162
    [33]
    L. Regnacq, Y. Wu, N. Neshatvar, D. Jiang, and A. Demosthenous, “A goertzel filter-based system for fast simultaneous multi-frequency eis,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 9, pp. 3133–3137, 2021. doi: 10.1109/TCSII.2021.3092069
    [34]
    Z. Kollar, F. Plesznik, and S. Trumpf, “Observer-based recursive sliding discrete fourier transform[tips & tricks],” IEEE Signal Process. Mag., vol. 35, no. 6, pp. 100–106, 2018. doi: 10.1109/MSP.2018.2853196
    [35]
    O. S. M. Abushafa, S. M. Gadoue, M. S. A. Dahidah, D. J. Atkinson, and P. Missailidis, “Capacitor voltage estimation scheme with reduced number of sensors for modular multilevel converters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 6, no. 4, pp. 2086–2097, 2018. doi: 10.1109/JESTPE.2018.2797245
    [36]
    V. Jayakumar, B. Chokkalingam, and J. L. Munda, “A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters,” IEEE Access, vol. 9, pp. 112 104–112 144, 2021. doi: 10.1109/ACCESS.2021.3100346

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (6) PDF downloads(2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return