Citation: | Q. Su, L. Shu, G. Hancke, K. Huang, E. Nurellari, Q. Zhao, N. Choudhury, and A. Hazarika, “Camera planning for physical safety of outdoor electronic devices: Perspective and analysis,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125129 |
[1] |
I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran, and M. Guizani, “Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges,” IEEE Wireless Commun., vol. 24, no. 3, pp. 10–16, Jun. 2017. doi: 10.1109/MWC.2017.1600421
|
[2] |
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: A survey on enabling technologies, protocols, and applications,” IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.
|
[3] |
T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges,” Comput. Electron. Agric., vol. 118, pp. 66–84, Oct. 2015. doi: 10.1016/j.compag.2015.08.011
|
[4] |
Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges,” IEEE Trans. Ind. Inf., vol. 17, no. 6, pp. 4322–4334, Jun. 2021. doi: 10.1109/TII.2020.3003910
|
[5] |
J. S. Kim, M.-G. Kim, B. R. Cha, and S. B. Pan, “A study of determining abnormal behaviors by using system for preventing agricultural product theft,” in Proc. Advances in Computer Science and Ubiquitous Computing, Singapore, Singapore, 2017, pp. 937–943.
|
[6] |
X. Yang, L. Shu, Y. Liu, G. P. Hancke, M. A. Ferrag, and K. Huang, “Physical security and safety of iot equipment: A survey of recent advances and opportunities,” IEEE Trans. Ind. Inf., vol. 18, no. 7, pp. 4319–4330, Jul. 2022. doi: 10.1109/TII.2022.3141408
|
[7] |
Q. Zhao, L. Shu, K. Li, M. A. Ferrag, X. Liu, and Y. Li, “Security and privacy in solar insecticidal lamps internet of things: Requirements and challenges,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 58–73, Jan. 2024. doi: 10.1109/JAS.2023.123870
|
[8] |
E. L. Piza, B. C. Welsh, D. P. Farrington, and A. L. Thomas, “CCTV surveillance for crime prevention: A 40-year systematic review with meta-analysis,” Criminol. Public Policy, vol. 18, no. 1, pp. 135–159, Feb. 2019. doi: 10.1111/1745-9133.12419
|
[9] |
X. Wang, “Intelligent multi-camera video surveillance: A review,” Pattern Recogn. Lett., vol. 34, no. 1, pp. 3–19, Jan. 2013. doi: 10.1016/j.patrec.2012.07.005
|
[10] |
J. Liu, S. Sridharan, and C. Fookes, “Recent advances in camera planning for large area surveillance: A comprehensive review,” ACM Comput. Surv., vol. 49, no. 1, p. 6, Mar. 2017.
|
[11] |
R. Du, P. Santi, M. Xiao, A. V. Vasilakos, and C. Fischione, “The sensable city: A survey on the deployment and management for smart city monitoring,” IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1533–1560, Secondquarter 2019.
|
[12] |
S. He, K. Shi, C. Liu, B. Guo, J. Chen, and Z. Shi, “Collaborative sensing in internet of things: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 24, no. 3, pp. 1435–1474, 2022.
|
[13] |
H. Zannat, T. Akter, M. Tasnim, and A. Rahman, “The coverage problem in visual sensor networks: A target oriented approach,” J. Network Comput. Appl., vol. 75, pp. 1–15, Nov. 2016. doi: 10.1016/j.jnca.2016.08.015
|
[14] |
A. Fatlawi, A. Vahedian, and N. K. Bachache, “Optimal camera placement using sine-cosine algorithm,” in Proc. 8th Int. Conf. Computer and Knowledge Engineering, Mashhad, Iran, 2018, pp. 115–119.
|
[15] |
Z. Su, Q. Zhang, Z. Lü, C.-M. Li, W. Lin, and F. Ma, “Weighting-based variable neighborhood search for optimal camera placement,” in Proc. 35th AAAI Conf. Artificial Intelligence, 2021, pp. 12400–12408.
|
[16] |
X. Wang, H. Zhang, and H. Gu, “Solving optimal camera placement problems in IoT using LH-RPSO,” IEEE Access, vol. 8, pp. 40881–40891, 2020.
|
[17] |
V. A. Puligandla and S. Loncaric, “A multiresolution approach for large real-world camera placement optimization problems,” IEEE Access, vol. 10, pp. 61601–61616, May 2022. doi: 10.1109/ACCESS.2022.3176817
|
[18] |
Y. Wang and G. Cao, “On full-view coverage in camera sensor networks,” in Proc. IEEE INFOCOM, Shanghai, China, 2011, pp. 1781–1789.
|
[19] |
J. Li, Z. Li, L. Yao, K. Wang, J. Li, Y. Lu, and C. Hu, “Optimisation of spatiotemporal context-constrained full-view area coverage deployment in camera sensor networks via quantum annealing,” in Int. J. Geogr. Inf. Sci., vol. 38, no. 9, pp. 1827–1855, May 2024.
|
[20] |
E. Hörster and R. Lienhart, “On the optimal placement of multiple visual sensors,” in Proc. 4th ACM Int. Workshop on Video Surveillance and Sensor Networks, Santa Barbara, USA, 2006, pp. 111–120.
|
[21] |
I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to explainable artificial intelligence in industry 4.0: A survey on what, how, and where,” IEEE Trans. Ind. Inf., vol. 18, no. 8, pp. 5031–5042, Aug. 2022. doi: 10.1109/TII.2022.3146552
|
[22] |
Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, “Particle swarm optimization inspired probability algorithm for optimal camera network placement,” IEEE Sens. J., vol. 12, no. 5, pp. 1402–1412, May 2012. doi: 10.1109/JSEN.2011.2170833
|
[23] |
X. Zhao, H. Liu, Y. Yu, X. Xu, W. Hu, M. Li, and J. Ou, “Bridge displacement monitoring method based on laser projection-sensing technology,” Sensors, vol. 15, no. 4, pp. 8444–8463, Apr. 2015. doi: 10.3390/s150408444
|
[24] |
L. Dai and B. Wang, “Sensor placement based on delaunay triangulation for complete confident information coverage in an area with obstacles,” in Proc. IEEE 34th Int. Performance Computing and Communications Conf., Nanjing, China, 2015, pp. 1–8.
|
[25] |
M. S. S. Suresh, A. Narayanan, and V. Menon, “Maximizing camera coverage in multicamera surveillance networks,” IEEE Sens. J., vol. 20, no. 17, pp. 10170–10178, Sep. 2020. doi: 10.1109/JSEN.2020.2992076
|
[26] |
Y. Xiong, M. Lu, and W. Chen, “Modeling and maximizing angle coverage in visual sensor networks,” in Proc. 37th Chinese Control Conf., Wuhan, China, 2018, pp. 2406–2409.
|
[27] |
K. Bairagi, S. Mitra, and U. Bhattacharya, “Coverage aware scheduling strategies for 3D wireless video sensor nodes to enhance network lifetime,” IEEE Access, vol. 9, pp. 124176–124199, Sep. 2021. doi: 10.1109/ACCESS.2021.3110271
|
[28] |
Y. Xiong, J. Li, and M. Lu, “Critical location spatial-temporal coverage optimization in visual sensor network,” Sensors, vol. 19, no. 19, p. 4106, Sep. 2019. doi: 10.3390/s19194106
|
[29] |
A. Kaushik, S. Indu, and D. Gupta, “A grey wolf optimization based algorithm for optimum camera placement,” Wireless Pers. Commun., vol. 105, no. 3, pp. 1143–1167, Feb. 2019. doi: 10.1007/s11277-019-06140-4
|
[30] |
H. Huang, C.-C. Ni, X. Ban, A. T. Schneider, J. Gao, and S. Lin, “Connected wireless camera network deployment with visibility coverage,” ACM Trans. Internet Things, vol. 1, no. 4, p. 25, Nov. 2020.
|
[31] |
X. Zhang, J. L. Alarcon-Herrera, and X. Chen, “Coverage enhancement for deployment of multi-camera networks,” in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics, Busan, Korea (South), 2015, pp. 909–914.
|
[32] |
X. Zhang, X. Chen, F. Farzadpour, and Y. Fang, “A visual distance approach for multicamera deployment with coverage optimization,” IEEE/ASME Trans. Mechatron., vol. 23, no. 3, pp. 1007–1018, Jun. 2018. doi: 10.1109/TMECH.2018.2834393
|
[33] |
T. C. Jesus, D. G. Costa, and P. Portugal, “On the computing of area coverage by visual sensor networks: Assessing performance of approximate and precise algorithms,” in Proc. IEEE 16th Int. Conf. Industrial Informatics, Porto, Portugal, 2018, pp. 193–198.
|
[34] |
A. Mavrinac, X. Chen, and Y. Tan, “Coverage quality and smoothness criteria for online view selection in a multi-camera network,” ACM Trans. Sens. Networks, vol. 10, no. 2, p. 33, Jan. 2014.
|
[35] |
C. Li, X. Chen, and L. Chai, “Coverage optimization of camera network for continuous deformable object,” Mechatronics, vol. 95, p. 103037, Nov. 2023. doi: 10.1016/j.mechatronics.2023.103037
|
[36] |
Z. Lei, X. Chen, X. Chen, and L. Chai, “Radial coverage strength for optimization of monocular multicamera deployment,” IEEE/ASME Trans. Mechatron., vol. 26, no. 6, pp. 3221–3231, Dec. 2021. doi: 10.1109/TMECH.2021.3056081
|
[37] |
C. Li, X. Chen, and L. Chai, “Simultaneous coverage and mapping of stereo camera network for unknown deformable object,” IEEE Trans. Instrum. Meas., vol. 73, pp. 5006410, 2024.
|
[38] |
C. Ding, J. H. Bappy, J. A. Farrell, and A. K. Roy-Chowdhury, “Opportunistic image acquisition of individual and group activities in a distributed camera network,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 3, pp. 664–672, Mar. 2017. doi: 10.1109/TCSVT.2016.2593620
|
[39] |
B. Cheng, L. Cui, W. Jia, W. Zhao, and P. H. Gerhard, “Multiple region of interest coverage in camera sensor networks for Tele-intensive care units,” IEEE Trans. Ind. Inf., vol. 12, no. 6, pp. 2331–2341, Dec. 2016. doi: 10.1109/TII.2016.2574305
|
[40] |
A. A. Altahir, V. S. Asirvadam, N. H. B. Hamid, P. Sebastian, N. B. Saad, R. B. Ibrahim, and S. C. Dass, “Optimizing visual surveillance sensor coverage using dynamic programming,” IEEE Sens. J., vol. 17, no. 11, pp. 3398–3405, Jun. 2017. doi: 10.1109/JSEN.2017.2694385
|
[41] |
S. Jun, T.-W. Chang, H. Jeong, and S. Lee, “Camera placement in smart cities for maximizing weighted coverage with budget limit,” IEEE Sens. J., vol. 17, no. 23, pp. 7694–7703, Dec. 2017. doi: 10.1109/JSEN.2017.2723481
|
[42] |
S. Suresh M. S. and V. Menon, “An efficient graph based approach for reducing coverage loss from failed cameras of a surveillance network,” IEEE Sens. J., vol. 22, no. 8, pp. 8155–8163, Apr. 2022.
|
[43] |
Q. Zhang, S. He, and J. Chen, “Toward optimal orientation scheduling for full-view coverage in camera sensor networks,” in Proc. IEEE Global Communications Conf., Washington, USA, 2016, pp. 1–6.
|
[44] |
P.-F. Wu, F. Xiao, C. Sha, H.-P. Huang, R.-C. Wang, and N.-X. Xiong, “Node scheduling strategies for achieving full-view area coverage in camera sensor networks,” Sensors, vol. 17, no. 6, p. 1303, Jun. 2017. doi: 10.3390/s17061303
|
[45] |
S. He, D.-H. Shin, J. Zhang, J. Chen, and Y. Sun, “Full-view area coverage in camera sensor networks: Dimension reduction and near-optimal solutions,” IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7448–7461, Sep. 2016. doi: 10.1109/TVT.2015.2498281
|
[46] |
J. Chen, H. Liu, Q. Zhang, and S. He, “Orientation optimization for full-view coverage using rotatable camera sensors,” IEEE Internet Things J., vol. 6, no. 6, pp. 10508–10518, Dec. 2019. doi: 10.1109/JIOT.2019.2939431
|
[47] |
V. Chvátal, “A combinatorial theorem in plane geometry,” J. Comb. Theory Ser. B, vol. 18, no. 1, pp. 39–41, Feb. 1975. doi: 10.1016/0095-8956(75)90061-1
|
[48] |
H. Huang, C.-C. Ni, X. Ban, J. Gao, and S. Lin, “Poster abstract: Connected wireless camera network deployment with visibility coverage,” in Proc. 12th Int. Conf. Information Processing in Sensor Networks, Philadelphia, USA, 2013, pp. 321–322.
|
[49] |
T. C. Jesus, P. Portugal, D. G. Costa, and F. Vasques, “A comprehensive dependability model for QOM-aware industrial WSN when performing visual area coverage in occluded scenarios,” Sensors, vol. 20, no. 22, p. 6542, Nov. 2020. doi: 10.3390/s20226542
|
[50] |
C.-H. Chen, Y. Yao, W.-W. Hsu, A. Koschan, and M. Abidi, “Continuous camera placement using multiple objective optimisation process,” IET Comput. Vision, vol. 9, no. 3, pp. 340–353, Jun. 2015. doi: 10.1049/iet-cvi.2014.0021
|
[51] |
J. Liu, S. Sridharan, C. Fookes, and T. Wark, “Optimal camera planning under versatile user constraints in multi-camera image processing systems,” IEEE Trans. Image Process., vol. 23, no. 1, pp. 171–184, Jan. 2014. doi: 10.1109/TIP.2013.2287606
|
[52] |
J. Liu, C. Fookes, T. Wark, and S. Sridharan, “On the statistical determination of optimal camera configurations in large scale surveillance networks,” in Proc. 12th European Conf. Computer Vision, Florence, Italy, 2012, pp. 44–57.
|
[53] |
X. Ma, Y. He, X. Luo, J. Li, M. Zhao, B. An, and X. Guan, “Camera placement based on vehicle traffic for better city security surveillance,” IEEE Intell. Syst., vol. 33, no. 4, pp. 49–61, Jul.-Aug. 2018. doi: 10.1109/MIS.2018.223110904
|
[54] |
Y. Zhang, H. Luo, M. Skitmore, Q. Li, and B. Zhong, “Optimal camera placement for monitoring safety in metro station construction work,” J. Constr. Eng. Manage., vol. 145, no. 1, p. 04018118, Jan. 2019. doi: 10.1061/(ASCE)CO.1943-7862.0001584
|
[55] |
C. Mi, J. Chen, Z. Zhang, S. Huang, and O. Postolache, “Visual sensor network task scheduling algorithm at automated container terminal,” IEEE Sens. J., vol. 22, no. 6, pp. 6042–6051, Mar. 2022. doi: 10.1109/JSEN.2021.3138929
|
[56] |
V. A. Puligandla and S. Lončarić, “A continuous camera placement optimization model for surround view,” IEEE Trans. Intell. Veh., vol. 9, no. 1, pp. 2966–2976, Jan. 2024. doi: 10.1109/TIV.2023.3299199
|
[57] |
A. Ali and H. S. Hassanein, “Optimal placement of camera wireless sensors in greenhouses,” in Proc. IEEE Int. Conf. Communications, Montreal, Canada, 2021, pp. 1–6.
|
[58] |
T. Wu, B. Li, Y. Luo, Y. Wang, C. Xiao, T. Liu, J. Yang, W. An, and Y. Guo, “MTU-net: Multilevel TransUNet for space-based infrared tiny ship detection,” IEEE Trans. Geosci. Remote Sens., vol. 61, p. 5601015, Jan. 2023.
|
[59] |
R. Kou, C. Wang, Y. Yu, Z. Peng, M. Yang, F. Huang, and Q. Fu, “LW-IRSTNet: Lightweight infrared small target segmentation network and application deployment,” IEEE Trans. Geosci. Remote Sens., vol. 61, p. 5621313, Sep. 2023.
|
[60] |
T. Liu, Q. Yin, J. Yang, Y. Wang, and W. An, “Combining deep denoiser and low-rank priors for infrared small target detection,” Pattern Recognit., vol. 135, p. 109184, Mar. 2023. doi: 10.1016/j.patcog.2022.109184
|
[61] |
T. Zhang, L. Li, S. Cao, T. Pu, and Z. Peng, “Attention-guided pyramid context networks for detecting infrared small target under complex background,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 4, pp. 4250–4261, Aug. 2023. doi: 10.1109/TAES.2023.3238703
|
[62] |
Q. Shi, C. Zhang, Z. Chen, F. Lu, L. Ge, and S. Wei, “An infrared small target detection method using coordinate attention and feature fusion,” Infrared Phys. Technol., vol. 131, p. 104614, Jun. 2023. doi: 10.1016/j.infrared.2023.104614
|
[63] |
S. Wang, X. Xu, H. Chen, K. Jiang, Z. Wang, and K. Tang, “Low-light salient object detection meets the small size,” IEEE Trans. Emerg. Top. Comput. Intell., 2024, doi: 10.1109/TETCI.2024.3442819.
|
[64] |
R. Kou, C. Wang, Z. Peng, Z. Zhao, Y. Chen, J. Han, F. Huang, Y. Yu, and Q. Fu, “Infrared small target segmentation networks: A survey,” Pattern Recognit., vol. 143, p. 109788, Nov. 2023. doi: 10.1016/j.patcog.2023.109788
|
[65] |
B. Ghari, A. Tourani, A. Shahbahrami, and G. Gaydadjiev, “Pedestrian detection in low-light conditions: A comprehensive survey,” Image Vision Comput., vol. 148, p. 105106, Aug. 2024. doi: 10.1016/j.imavis.2024.105106
|
[66] |
X. Luo, J. Liao, L. Hu, Z. Zhou, Z. Zhang, Y. Zang, P. Wang, and J. He, “Research progress of intelligent agricultural machinery and practice of unmanned farm in China,” J. South China Agric. Univ., vol. 42, no. 6, pp. 8–17, Nov. 2021.
|
[67] |
K. Huang, L. Shu, K. Li, X. Yang, Y. Zhu, X. Wang, and Q. Su, “Design and prospect for anti-theft and anti-destruction of nodes in solar insecticidal lamps internet of things,” Smart Agric., vol. 3, no. 1, pp. 129–143, Mar. 2021.
|
[68] |
L. Guo, D. Li, Y. Wang, Z. Zhang, G. Tong, W. Wu, and D. Du, “Maximisation of the number of β-view covered targets in visual sensor networks,” Int. J. Sens. Networks, vol. 29, no. 4, pp. 226–241, Apr. 2019. doi: 10.1504/IJSNET.2019.098557
|
[69] |
J. Kritter, M. Brévilliers, J. Lepagnot, and L. Idoumghar, “On the optimal placement of cameras for surveillance and the underlying set cover problem,” Appl. Soft Comput., vol. 74, pp. 133–153, Jan. 2019. doi: 10.1016/j.asoc.2018.10.025
|
[70] |
P. Tripicchio, S. D’Avella, G. Camacho-Gonzalez, L. Landolfi, G. Baris, C. A. Avizzano, and A. Filippeschi, “Multi-camera extrinsic calibration for real-time tracking in large outdoor environments,” J. Sens. Actuator Netw., vol. 11, no. 3, p. 40, Jul. 2022. doi: 10.3390/jsan11030040
|