Citation: | D. Luo, Y. Wang, F. Lewis, and Y. Song, “Unified output feedback based prescribed performance consensus tracking control of heterogeneous multi-agent systems,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.125094 |
[1] |
H. Chen, R. Ye, X. Wang, and R. Lu, “Cooperative control of power system load and frequency by using differential games,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 882–897, May 2015. doi: 10.1109/TCST.2014.2346996
|
[2] |
D. J. Pack, P. DeLima, G. J. Toussaint, and G. York, “Cooperative control of uavs for localization of intermittently emitting mobile targets,” IEEE Trans. Syst., Man, Cybern. B. Cybern., vol. 39, no. 4, pp. 959–970, Aug. 2009. doi: 10.1109/TSMCB.2008.2010865
|
[3] |
W. Cheng, K. Zhang, and B. Jiang, “Fixed-time fault-tolerant formation control for a cooperative heterogeneous multiagent system with prescribed performance,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 1, pp. 462–474, Jan. 2023. doi: 10.1109/TSMC.2022.3186382
|
[4] |
W. Cheng, K. Zhang, and B. Jiang, “Fixed-time and prescribed-time fault-tolerant optimal tracking control for heterogeneous multiagent systems,” IEEE Trans. Autom. Sci. Eng., vol.21, no.4, pp. 7275−7286, Oct. 2024.
|
[5] |
S. Xiao and J. Dong, “Distributed adaptive fuzzy fault-tolerant containment control for heterogeneous nonlinear multiagent systems,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 52, no. 2, pp. 952–965, Feb. 2022.
|
[6] |
D. Luo, Y. Wang, Z. Li, Y. Song, and F. L. Lewis, “Asymptotic leaderfollowing consensus of heterogeneous multi-agent systems with unknown and time-varying control gains,” IEEE Trans. Autom. Sci. Eng., vol. 22, pp. 2768−2779, 2025.
|
[7] |
M. Lu, J. Wu, X. Zhan, T. Han, and H. Yan, “Consensus of second-order heterogeneous multi-agent systems with and without input saturation,” ISA Trans., vol. 126, pp. 14–20, Jul. 2022. doi: 10.1016/j.isatra.2021.08.001
|
[8] |
Q. Wei, X. Wang, X. Zhong, and N. Wu, “Consensus control of leader-following multi-agent systems in directed topology with heterogeneous disturbances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 20, pp. 423–431, Feb. 2021.
|
[9] |
T. Liu and Z. Jiang, “Distributed output-feedback control of nonlinear multi-agent systems,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2912–2917, Nov. 2013. doi: 10.1109/TAC.2013.2257616
|
[10] |
J. Long, W. Wang, C. Wen, J. Huang, and L. Jinhu, “Output feedback based adaptive consensus tracking for uncertain heterogeneous multi-agent systems with event-triggered communication,” Automatica, to be published, doi: 10.1016/j.automatica.2021.110049.
|
[11] |
W. Hu, L. Liu, and G. Feng, “Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1914–1924, Aug. 2017. doi: 10.1109/TCYB.2016.2602327
|
[12] |
H. Zhang, J. Han, Y. Wang, and H. Jiang, “H∞ consensus for linear heterogeneous discrete-time multiagent systems with output feedback control,” IEEE Trans. Cybern., vol. 49, no. 10, pp. 3713–3721, Oct. 2019. doi: 10.1109/TCYB.2018.2849361
|
[13] |
C. Hua, R. Cui, P. Ning, and X. Luo, “Event-based output feedback consensus control for multiagent systems with unknown non-identical control directions,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 4, pp. 1747–1757, Apr. 2023. doi: 10.1109/TCSI.2023.3238465
|
[14] |
A. Weiss, M. Baldwin, R. S. Erwin, and I. Kolmanovsky, “Model predictive control for spacecraft rendezvous and docking: Strategies for handling constraints and case studies,” IEEE Trans. Aerosp. Electron. Syst., vol. 23, no. 4, pp. 1638–1647, Jul. 2015.
|
[15] |
J. Na, Y. Huang, X. Wu, G. Gao, G. Herrmann, and J. J. Zheng, “Active adaptive estimation and control for vehicle suspensions with prescribed performance,” IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 2063–2077, Nov. 2018. doi: 10.1109/TCST.2017.2746060
|
[16] |
C. Hu, H. Gao, J. Guo, H. Taghavifar, Y. Qin, J. Na, and C. Wei, “Rise-based integrated motion control of autonomous ground vehicles with asymptotic prescribed performance,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 9, pp. 5336–5348, Sep. 2021. doi: 10.1109/TSMC.2019.2950468
|
[17] |
C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2090–2099, 2008. doi: 10.1109/TAC.2008.929402
|
[18] |
A. Ilchmann, E. Ryan, and C. J. Sangwin, “Tracking with prescribed transient behaviour,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 7, pp. 471–493, 2002. doi: 10.1051/cocv:2002064
|
[19] |
G. Chen and Y. Zhao, “Distributed adaptive output-feedback tracking control of non-affine multi-agent systems with prescribed performance,” Journal of the Franklin Institute, vol. 355, no. 13, pp. 6087–6110, 2018. doi: 10.1016/j.jfranklin.2018.05.064
|
[20] |
L. Zhang, W. Che, B. Chen, and C. Lin, “Adaptive fuzzy output-feedback consensus tracking control of nonlinear multiagent systems in prescribed performance,” IEEE Trans. Cybern., vol. 53, no. 3, pp. 1932–1943, Mar. 2023. doi: 10.1109/TCYB.2022.3171239
|
[21] |
J. Zhang, Y. Fu, and J. Fu, “Funnel-based adaptive predefined-time leader-following output-feedback optimal control for second-order nonlinear multi-agent systems,” IEEE Trans. Autom. Sci. Eng., vol. 22, pp. 2794−2805, 2025.
|
[22] |
X. Cai, C. Wang, G. Wang, Y. Li, L. Xua, and Z. Zhang, “Distributed low-complexity output feedback tracking control for nonlinear multi-agent systems with unmodeled dynamics and prescribed performance,” Int. J. Syst. Sci., vol. 50, no. 6, pp. 1229–1243, 2019.
|
[23] |
G. Wang, C. Wang, and L. Li, “Fully distributed low-complexity control for nonlinear strict-feedback multiagent systems with unknown dead-zone inputs,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 2, pp. 421–431, 2020. doi: 10.1109/TSMC.2017.2759305
|
[24] |
X. Huang and Y. Song, “Distributed and performance guaranteed robust control for uncertain MIMO nonlinear systems with controllability relaxation,” IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 2460–2467, May 2022.
|
[25] |
X. Min, S. Baldi, W. Yu, and J. Cao, “Low-complexity control with funnel performance for uncertain nonlinear multi-agent systems,” IEEE Trans. Autom. Control, vol. 69, no. 3, pp. 1975–1982, 2024. doi: 10.1109/TAC.2023.3302855
|
[26] |
X. Min, S. Baldi, and W. Yu, “Low-complexity control of nonholonomic mobile robots with formation constraints,” in 2022 IEEE 61st Conf. on Decision and Control (CDC). IEEE, 2022, pp. 4501–4506.
|
[27] |
Z. Li, Y. Wang, Y. Song, and W. Ao, “Global consensus tracking control for high-order nonlinear multiagent systems with prescribed performance,” IEEE Trans. Cybern., vol. 53, no. 10, pp. 6529–6537, Oct. 2023. doi: 10.1109/TCYB.2022.3211995
|
[28] |
K. Zhao, F. L. Lewis, and L. Zhao, “Unifying performance specifications in tracking control of MIMO nonlinear systems with actuation faults,” Automatica, to be published, doi: 10.1016/j.automatica.2023.1111020.
|
[29] |
K. Zhao, C. Wen, Y. Song, and F. L. Lewis, “Adaptive uniform performance control of strict-feedback nonlinear systems with time-varying control gain,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 451–461, Feb. 2023. doi: 10.1109/JAS.2022.106064
|
[30] |
M. W. Spong and M. Vidyasagar, Robot dynamics and control. John Wiley & Sons, 2008.
|
[31] |
H. Kaufman, I. Barkana, and K. Sobel, Direct Adaptive Control Algorithms: Theory and Applications. New York, NY, USA: Springer-Verlag, 1998.
|
[32] |
H. K. Khalil, Nonlinear Systems: Third Edition. New Jersey, NJ, USA: Prentice Hall, 2002.
|
[33] |
M. Kristić, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design. New York, NY, USA: John Wiley & Sons, Inc., 1995.
|
[34] |
X. Guo, C. Wang, Z. Dong, and Z. Ding, “Adaptive containment control for heterogeneous MIMO nonlinear multi-agent systems with unknown direction actuator faults,” IEEE Trans. Autom. Control, vol.68, no.9, pp. 5783−5790, Sep. 2023.
|
[35] |
Y. Cao and Y. Song, “Performance guaranteed consensus tracking control of nonlinear multiagent systems: A finite-time function-based approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1536–1546, 2021. doi: 10.1109/TNNLS.2020.2984944
|
[36] |
C. P. Bechlioulis and G. A. Rovithakis, “Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance,” IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 123–134, 2017. doi: 10.1109/TAC.2016.2535102
|
[37] |
Z. Li, Y. Wang, Y. Song, X. Huang, and F. L. Lewis, “Performance-based distributed control of multiagent systems: A dual phase approach,” IEEE Trans. Cybern., vol. 54, no. 7, pp. 4124−4137, Jul. 2024.
|
[38] |
J. Huang, Y. Song, W. Wang, C. Wen, and L. Guoqi, “Smooth control design for adaptive leader-following consensus control of a class of high-order nonlinear systems with time-varying reference,” Automatica, vol. 83, pp. 361–367, 2017. doi: 10.1016/j.automatica.2017.06.025
|
[39] |
C. Wang, C. Wen, L. Guo, and L. Xing, “Adaptive consensus control for nonlinear multiagent systems with unknown control directions using event-triggered communication,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3057–3068, May 2022. doi: 10.1109/TCYB.2020.3022423
|
[40] |
Y. Hong and C. Pan, “A lower bound for the smallest singular value,” Linear Algebra Appl., vol. 172, pp. 27–32, 1992. doi: 10.1016/0024-3795(92)90016-4
|
[41] |
M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, “Adaptive nonlinear control without overparametrization,” Syst. Control Lett., vol. 19, no. 3, pp. 177–185, Sep. 1992. doi: 10.1016/0167-6911(92)90111-5
|
[42] |
C. P. Bechlioulis and G. A. Rovithakis, “A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems,” Automatica, vol. 50, no. 4, pp. 1217–1226, 2014. doi: 10.1016/j.automatica.2014.02.020
|