Citation: | J. Wu, M. Lu, F. Deng, and J. Chen, “An emulation approach to semi-global robust output regulation for a class of nonlinear uncertain systems,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.125085 |
[1] |
X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 1–17, 2020. doi: 10.1109/JAS.2019.1911651
|
[2] |
G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked control systems,” IEEE Trans. Control Systems Technology, vol. 10, no. 3, pp. 438–446, 2002. doi: 10.1109/87.998034
|
[3] |
Q.-K. Li, X. Li, J. Wang, and S. Du, “Stabilization of networked control systems using a mixed-mode based switched delay system method,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 6, pp. 1089–1098, 2018. doi: 10.1109/JAS.2018.7511228
|
[4] |
D. Nešić and A. R. Teel, “Input-output stability properties of networked control systems,” IEEE Trans. Automatic Control, vol. 49, no. 10, pp. 1650–1667, 2004. doi: 10.1109/TAC.2004.835360
|
[5] |
G. C. Walsh, O. Beldiman, and L. G. Bushnell, “Asymptotic behavior of nonlinear networked control systems,” IEEE Trans. Automatic Control, vol. 46, no. 7, pp. 1093–1097, 2001. doi: 10.1109/9.935062
|
[6] |
D. Nešić and A. R. Teel, “Input-to-state stability of networked control systems,” Automatica, vol. 40, no. 12, pp. 2121–2128, 2004.
|
[7] |
R. Postoyan and D. Nešić, “A framework for the observer design for networked control systems,” IEEE Trans. Automatic Control, vol. 57, no. 5, pp. 1309–1314, 2011.
|
[8] |
W. Wang and H.-B. Zeng, “A looped functional method to design state feedback controllers for Lurie networked control systems,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 4, pp. 1093–1095, 2023. doi: 10.1109/JAS.2023.123141
|
[9] |
D. Carnevale, A. R. Teel, and D. Nešić, “A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems,” IEEE Trans. Automatic Control, vol. 52, no. 5, pp. 892–897, 2007. doi: 10.1109/TAC.2007.895913
|
[10] |
D. Astolfi, G. Casadei, and R. Postoyan, “Emulation-based semiglobal output regulation of minimum phase nonlinear systems with sampled measurements,” in 2018 European Control Conf.. IEEE, 2018, pp. 1931–1936.
|
[11] |
D. Nešić, “Networked control systems: An emulation approach to controller design,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 569–576, 2007. doi: 10.3182/20070822-3-ZA-2920.00094
|
[12] |
K. Chen, D. Xu, and Y. Su, “Ripple-free sampled-data output regulation: Stability analysis and sampling period estimation,” in 2019 Chinese Control Conf.. IEEE, 2019, pp. 840–845.
|
[13] |
L. Wang, L. Marconi, and C. M. Kellett, “Robust implementable regulator design of general linear systems,” arXiv preprint arXiv: 2102.13413, 2021.
|
[14] |
Y. Deng, V. Léchappé, C. Zhang, E. Moulay, D. Du, F. Plestan, and Q.-L. Han, “Designing discrete predictor-based controllers for networked control systems with time-varying delays: Application to a visual servo inverted pendulum system,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 10, pp. 1763–1777, 2022. doi: 10.1109/JAS.2021.1004249
|
[15] |
H. Yu and T. Chen, “Networked control for nonlinear plants subject to updating disorder,” IEEE Trans. Automatic Control, 2023, DOI: 10.1109/TAC.2023.3340981.
|
[16] |
W. Ren, W. Wang, Z.-R. Pan, X.-M. Sun, A. R. Teel, and D. Nešić, “Emulation-based stabilization for networked control systems with stochastic channels,” Automatica, vol. 163, p. 111594, 2024. doi: 10.1016/j.automatica.2024.111594
|
[17] |
X. Jiang, H. Yan, B. Li, S. Zheng, T. Huang, and P. Shi, “Optimal tracking of networked control systems over the fading channel with packet loss,” IEEE Trans. Automatic Control, 2023, DOI: 10.1109/TAC.2023.3343593.
|
[18] |
M. Lu and J. Huang, “Robust output regulation problem for linear time-delay systems,” Int. Journal of Control, vol. 88, no. 6, pp. 1236–1245, 2015. doi: 10.1080/00207179.2014.1002111
|
[19] |
M. Lu and L. Liu, “Quantized output regulation of minimum-phase linear uncertain systems,” Int. Journal of Robust and Nonlinear Control, vol. 30, no. 17, pp. 7074–7088, 2020. doi: 10.1002/rnc.5157
|
[20] |
W. Liu and J. Huang, “Sampled-data semi-global robust output regulation for a class of nonlinear systems,” Journal of Systems Science and Complexity, vol. 34, no. 5, pp. 1743–1765, 2021. doi: 10.1007/s11424-021-1165-2
|
[21] |
Y. Jiang and J. Dai, “Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 568–574, 2020. doi: 10.1109/JAS.2020.1003060
|
[22] |
J. Huang and Z. Chen, “A general framework for tackling the output regulation problem,” IEEE Trans. Automatic Control, vol. 49, no. 12, pp. 2203–2218, 2004. doi: 10.1109/TAC.2004.839236
|
[23] |
A. Odekunle, W. Gao, and Y. Wang, “Data-driven global robust optimal output regulation of uncertain partially linear systems,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 5, pp. 1108–1115, 2019. doi: 10.1109/JAS.2019.19117678
|
[24] |
B. A. Francis, “The linear multivariable regulator problem,” SIAM Journal on Control and Optimization, vol. 15, no. 3, pp. 486–505, 1977. doi: 10.1137/0315033
|
[25] |
B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976. doi: 10.1016/0005-1098(76)90006-6
|
[26] |
E. J. Davison, “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Trans. Automatic Control, vol. 22, no. 2, pp. 283–283, 1977.
|
[27] |
A. Isidori and C. I. Byrnes, “Output regulation of nonlinear systems,” IEEE Trans. Automatic Control, vol. 35, no. 2, pp. 131–140, 1990. doi: 10.1109/9.45168
|
[28] |
C. I. Byrnes, F. D. Priscoli, and A. Isidori, Output Regulation of Uncertain Nonlinear Systems. Springer Science & Business Media, 2012.
|
[29] |
J. Huang, Nonlinear Output Regulation: Theory and Applications. Philadelphia, PA: SIAM, 2004.
|
[30] |
Z. Chen and J. Huang, Stabilization and Regulation of Nonlinear Systems: A Robust and Adaptive Approach. Springer, Switzerland, 2015.
|
[31] |
M. Lu, “A sensory feedback based discrete distributed observer to cooperative output regulation,” IEEE Trans. Automatic Control, vol. 67, no. 9, pp. 4762–4769, 2022. doi: 10.1109/TAC.2022.3162545
|
[32] |
W. Huang, H. Liu, and J. Huang, “Distributed robust containment control of linear heterogeneous multi-agent systems: An output regulation approach,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 5, pp. 864–877, 2022. doi: 10.1109/JAS.2022.105560
|
[33] |
J. Wu, M. Lu, F. Deng, and J. Chen, “Output regulation of nonlinear systems by an emulation-based approach,” in 2023 American Control Conf. (ACC). IEEE, 2023, pp. 4779–4784.
|
[34] |
A. Serrani, A. Isidori, and L. Marconi, “Semiglobal robust output regulation of minimum-phase nonlinear systems,” Int. Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 10, no. 5, pp. 379–396, 2000.
|
[35] |
W. Liu and J. Huang, “Event-triggered global robust output regulation for a class of nonlinear systems,” IEEE Trans. Automatic Control, vol. 62, no. 11, pp. 5923–5930, 2017. doi: 10.1109/TAC.2017.2700384
|
[36] |
R. Goedel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling Stability, and Robustness. Princeton University Press, Princeton, NJ, 2012.
|
[37] |
C. I. Byrnes and A. Isidori, “Nonlinear internal models for output regulation,” IEEE Trans. Automatic Control, vol. 49, no. 12, pp. 2244–2247, 2004. doi: 10.1109/TAC.2004.838492
|
[38] |
W. Lan, Z. Chen, and J. Huang, “Semi-global robust output regulation for nonlinear systems in normal form using output feedback,” Communications in Information & Systems, vol. 5, no. 4, pp. 385–400, 2005.
|
[39] |
M. Lu and J. Huang, “A class of nonlinear internal models for global robust output regulation problem,” Int. Journal of Robust and Nonlinear Control, vol. 25, no. 12, pp. 1831–1843, 2015. doi: 10.1002/rnc.3180
|
[40] |
V. O. Nikiforov, “Adaptive non-linear tracking with complete compensation of unknown disturbances,” European Journal of Control, vol. 4, no. 2, pp. 132–139, 1998. doi: 10.1016/S0947-3580(98)70107-4
|
[41] |
D. Xu and J. Huang, “Output regulation design for a class of nonlinear systems with an unknown control direction,” Journal of Dynamic Systems, Measurement, and Control, vol. 132, no. 1, pp. 1–6, 2010.
|
[42] |
E. Sontag and A. Teel, “Changing supply functions in input/state stable systems,” IEEE Trans. Automatic Control, vol. 40, no. 8, pp. 1476–1478, 1995. doi: 10.1109/9.402246
|
[43] |
D. Jaeger and R. Jung, Encyclopedia of Computational Neuroscience. New York, NY: Springer New York, 2015.
|
[44] |
W. S. Sayed, A. G. Radwan, H. A. Fahmy, and A. Elsedeek, “Trajectory control and image encryption using affine transformation of Lorenz system,” Egyptian Informatics Journal, vol. 22, no. 2, pp. 155–166, 2021. doi: 10.1016/j.eij.2020.07.002
|