Citation: | F. Ren, X. Wang, Y. Li, and Z. Zeng, “Finite-Time Sliding-Mode Control for Semi-Markov Systems With Delayed Impulses,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.125004 |
[1] |
W. Qi, G. Zong, and H. R. Karimi, “Sliding mode control for nonlinear stochastic singular semi-Markov jump systems,” IEEE Trans. Automatic Control, vol. 65, no. 1, pp. 361–368, 2019.
|
[2] |
W. Qi, G. Zong, and H. R. Karimi, “Finite-time observer-based sliding mode control for quantized semi-Markov switching systems with application,” IEEE Trans. Industrial Informatics, vol. 16, no. 2, pp. 1259–1271, 1259.
|
[3] |
X. M. Zhang, Q. L. Han, and X. H. Ge, “Novel stability criteria for linear time-delay systems using lyapunov-krasovskii functionals with a cubic polynomial on time-varying delay,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 77–85, 2021. doi: 10.1109/JAS.2020.1003111
|
[4] |
P. Li, X. Li, and J. Lu, “Input-to-state stability of impulsive delay systems with multiple impulses,” IEEE Trans. Automatic Control, vol. 66, no. 1, pp. 362–368, 2020.
|
[5] |
Q. Xi, X. Z, L iu, and X. D, L i, “Practical finite-time stability of nonlinear systems with delayed impulsive control,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 11, pp. 7317–7325, 2023. doi: 10.1109/TSMC.2023.3296481
|
[6] |
S. Niu, W. H. Chen, X. Lu, and W. Xu, “Integral sliding mode control design for uncertain impulsive systems with delayed impulses,” Journal of the Franklin Institute, vol. 360, no. 17, pp. 13537–13573, 2023. doi: 10.1016/j.jfranklin.2023.10.016
|
[7] |
L. Song, and S. Tong, “Observer-based integral sliding mode control with switching gains for fuzzy impulsive stochastic systems,” IEEE Trans. Fuzzy Systems, vol. 32, no. 3, pp. 1078–1086, 2023.
|
[8] |
W. H. Chen, X. Deng, W. X. Zheng, “Sliding-mode control for linear uncertain systems with impulse effects via switching gains,” IEEE Trans. Automatic Control, vol. 67, no. 4, pp. 2044–2051, 2021.
|
[9] |
L. Hua, K. Shi, Z. G. Wu, S. Han, and S. Zhong, “Sliding mode control for recurrent neural networks with time-varying delays and impulsive effects,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1319–1321, 2023. doi: 10.1109/JAS.2023.123372
|
[10] |
X. Mu, and Z. Hu, “Stability analysis for semi-Markovian switched stochastic systems with asynchronously impulsive jumps,” Science China Information Sciences, vol. 64, pp. 1–13, 2021.
|
[11] |
W. H. Chen, W. Xu, and W. X. Zheng, “Sliding-mode-based impulsive control for a class of time-delay systems with input disturbance,” Automatica, vol. 164, p. 111633, 2024. doi: 10.1016/j.automatica.2024.111633
|
[12] |
N. Zhang, H. Chen, and W. Li, “Stability for multi-links stochastic delayed complex networks with semi-Markov jump under hybrid multi-delay impulsive control,” Neurocomputing, vol. 449, pp. 214–228, 2021. doi: 10.1016/j.neucom.2021.03.116
|
[13] |
X. Chen, Y. Liu, Q. Ruan, and J. Cao, “Stabilization of nonlinear time-delay systems: Flexible delayed impulsive control,” Applied Mathematical Modelling, vol. 114, pp. 488–501, 2023. doi: 10.1016/j.apm.2022.10.013
|
[14] |
X. Li, WC Ho. Daniel, and J. Cao, “Finite-time stability and settling-time estimation of nonlinear impulsive systems,” Automatica, vol. 99, pp. 361–368, 2019. doi: 10.1016/j.automatica.2018.10.024
|
[15] |
J. Wang, D. Wang, H. Yan, and H. Shen, “Composite anti-sisturbance $\mathcal {H} _ {\infty} $ control for hidden markov jump systems with multi-sensor against replay attacks,” IEEE Trans. Automatic Control, 2023.
|
[16] |
F. Ren, X. Wang, Y. Li, and Z. Zeng, “Fully connected neural network-based fixed-time adaptive sliding mode control for fuzzy semi-Markov system,” IEEE Trans. Industrial Informatics, 2024.
|
[17] |
Z. Li, S. Li, A. Francis, and X. Luo, “A novel calibration system for robot arm via an open dataset and a learning perspective,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 5169–5173, 2022.
|
[18] |
Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 23–36, 2021. doi: 10.1109/JAS.2020.1003381
|
[19] |
Z. Li, S. Li, O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 11, pp. 8778–8790, 2022.
|