Citation: | J. Cheng, H. Chen, Z. Xue, Y. Huang, and Y. Zhang, “An online exploratory maximum likelihood estimation approach to adaptive Kalman filtering,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.125001 |
[1] |
R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960. doi: 10.1115/1.3662552
|
[2] |
K. Li, S. Zhao, B. Huang, and F. Liu, “Bayesian filtering for high-dimensional state-space models with state partition and error compensation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1239–1249, May 2024. doi: 10.1109/JAS.2023.124137
|
[3] |
H. A. Patel and D. G. Thakore, “Moving object tracking using Kalman filter,” Int. Journal of Computer Science and Mobile Computing, vol. 2, no. 4, pp. 326–332, 2013.
|
[4] |
S. Wang, L. Chen, D. Gu, and H. Hu, “Cooperative localization of AUVs using moving horizon estimation,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 68–76, 2014. doi: 10.1109/JAS.2014.7004622
|
[5] |
Y. Zheng, Q. Li, C. Wang, X. Wang, and L. Hu, “Multi-source adaptive selection and fusion for pedestrian dead reckoning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2174–2185, Dec. 2022. doi: 10.1109/JAS.2021.1004144
|
[6] |
B. Wu, J. Zhong, and C. Yang, “A visual-based gesture prediction framework applied in social robots,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 510–519, Mar. 2022. doi: 10.1109/JAS.2021.1004243
|
[7] |
Y. Yuan, X. Luo, M. Shang, and Z. Wang, “A Kalman-filter-incorporated latent factor analysis model for temporally dynamic sparse data,” IEEE Trans. Cybernetics, vol. 53, no. 9, pp. 5788–5801, 2022.
|
[8] |
D. Wu, X. Luo, Y. He, and M. Zhou, “A prediction-sampling-based multilayer-structured latent factor model for accurate representation to high-dimensional and sparse data,” IEEE Trans. Neural Networks and Learning Systems, vol. 35, no. 3, pp. 3845–3858, 2022.
|
[9] |
Z. Li, S. Li, and X. Luo, “Efficient industrial robot calibration via a novel unscented Kalman filter-incorporated variable step-size Levenberg–Marquardt algorithm,” IEEE Trans. Instrumentation and Measurement, vol. 72, pp. 1–12, 2023.
|
[10] |
W. Yang, S. Li, Z. Li, and X. Luo, “Highly accurate manipulator calibration via extended Kalman filter-incorporated residual neural network,” IEEE Trans. Industrial Informatics, vol. 19, no. 11, pp. 10831–10841, 2023. doi: 10.1109/TII.2023.3241614
|
[11] |
J. Duník, O. Straka, O. Kost, and J. Havlík, “Noise covariance matrices in state-space models: A survey and comparison of estimation methods—Part I,” Int. Journal of Adaptive Control and Signal Processing, vol. 31, no. 11, pp. 1505–1543, Nov. 2017. doi: 10.1002/acs.2783
|
[12] |
M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past, present, and future[point of view],” Proc. the IEEE, vol. 109, no. 7, pp. 1152–1165, 2021. doi: 10.1109/JPROC.2021.3072740
|
[13] |
R. Mehra, “On the identification of variances and adaptive Kalman filtering,” IEEE Trans. Automatic Control, vol. 15, no. 2, pp. 175–184, 1970. doi: 10.1109/TAC.1970.1099422
|
[14] |
B. J. Odelson, M. R. Rajamani, and J. B. Rawlings, “A new autocovariance least-squares method for estimating noise covariances,” Automatica, vol. 42, no. 2, pp. 303–308, 2006. doi: 10.1016/j.automatica.2005.09.006
|
[15] |
J. Duník, O. Straka, and M. Šimandl, “On autocovariance least-squares method for noise covariance matrices estimation,” IEEE Trans. Automatic Control, vol. 62, no. 2, pp. 967–972, 2016.
|
[16] |
J. Duník, O. Kost, and O. Straka, “Design of measurement difference autocovariance method for estimation of process and measurement noise covariances,” Automatica, vol. 90, pp. 16–24, 2018. doi: 10.1016/j.automatica.2017.12.040
|
[17] |
O. Kost, J. Duník, and O. Straka, “Measurement difference method: A universal tool for noise identification,” IEEE Trans. Automatic Control, vol. 68, no. 3, pp. 1792–1799, 2022.
|
[18] |
W. Sun, P. Sun, and J. Wu, “An adaptive fusion attitude and heading measurement method of MEMS/GNSS based on covariance matching,” Micromachines, vol. 13, no. 10, p. 1787, 2022. doi: 10.3390/mi13101787
|
[19] |
K. Myers and B. D. Tapley, “Adaptive sequential estimation with unknown noise statistics,” IEEE Trans. Automatic Control, vol. 21, no. 4, pp. 520–523, 1976. doi: 10.1109/TAC.1976.1101260
|
[20] |
A. P. Sage and G. W. Husa, “Adaptive filtering with unknown prior statistics,” in Joint Automatic Control Conf., no. 7, 1969, pp. 760–769.
|
[21] |
X. Gao, D. You, and S. Katayama, “Seam tracking monitoring based on adaptive Kalman filter embedded Elman neural network during high-power fiber laser welding,” IEEE Trans. Industrial Electronics, vol. 59, no. 11, pp. 4315–4325, 2012. doi: 10.1109/TIE.2012.2193854
|
[22] |
A. Mohamed and K. Schwarz, “Adaptive Kalman filtering for INS/GPS,” Journal of Geodesy, vol. 73, pp. 193–203, 1999. doi: 10.1007/s001900050236
|
[23] |
W. Ding, J. Wang, C. Rizos, and D. Kinlyside, “Improving adaptive Kalman estimation in GPS/INS integration,” Journal of Navigation, vol. 60, no. 3, pp. 517–529, 2007. doi: 10.1017/S0373463307004316
|
[24] |
W. Qi, W. Qin, and Z. Yun, “Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter,” Energy, vol. 307, p. 132805, 2024. doi: 10.1016/j.energy.2024.132805
|
[25] |
J. Chen, Y. Zhang, W. Li, W. Cheng, and Q. Zhu, “State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter,” Journal of Energy Storage, vol. 55, p. 105396, 2022. doi: 10.1016/j.est.2022.105396
|
[26] |
J. J. Wang, W. Ding, and J. Wang, “Improving adaptive Kalman filter in GPS/SDINS integration with neural network,” in Proc. the 20th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 2007, pp. 571–578.
|
[27] |
H. Zhou, Y. Zhao, X. Xiong, Y. Lou, and S. Kamal, “IMU dead-reckoning localization with RNN-IEKF algorithm,” in 2022 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 11382–11387.
|
[28] |
F. Wu, H. Luo, H. Jia, F. Zhao, Y. Xiao, and X. Gao, “Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation,” IEEE Trans. Instrumentation and Measurement, vol. 70, pp. 1–13, 2020.
|
[29] |
K. Xiong, C. Wei, and H. Zhang, “Q-learning for noise covariance adaptation in extended Kalman filter,” Asian Journal of Control, vol. 23, no. 4, pp. 1803–1816, Jul. 2021. doi: 10.1002/asjc.2336
|
[30] |
X. Dai, H. Fourati, and C. Prieur, “A dynamic grid-based Q-learning for noise covariance adaptation in EKF and its application in navigation,” in 2022 IEEE 61st Conf. on Decision and Control (CDC). IEEE, 2022, pp. 4984–4989.
|
[31] |
X. R. Li and Y. Bar-Shalom, “A recursive multiple model approach to noise identification,” IEEE Trans. Aerospace and Electronic Systems, vol. 30, no. 3, pp. 671–684, 1994. doi: 10.1109/7.303738
|
[32] |
Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, “A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices,” IEEE Trans. Automatic Control, vol. 63, no. 2, pp. 594–601, 2017.
|
[33] |
Y. Huang, Y. Zhang, P. Shi, and J. Chambers, “Variational adaptive Kalman filter with Gaussian-inverse-Wishart mixture distribution,” IEEE Trans. Automatic Control, vol. 66, no. 4, pp. 1786–1793, 2020.
|
[34] |
Y. Huang, F. Zhu, G. Jia, and Y. Zhang, “A slide window variational adaptive Kalman filter,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3552–3556, 2020.
|
[35] |
X. Dong, G. Battistelli, L. Chisci, and Y. Cai, “A variational Bayes moving horizon estimation adaptive filter with guaranteed stability,” Automatica, vol. 142, p. 110374, 2022. doi: 10.1016/j.automatica.2022.110374
|
[36] |
V. B. Tadić, “Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden Markov models,” IEEE Trans. Information Theory, vol. 56, no. 12, pp. 6406–6432, 2010. doi: 10.1109/TIT.2010.2081110
|
[37] |
S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of multivariable dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667–1682, 2005. doi: 10.1016/j.automatica.2005.05.008
|
[38] |
D.-J. Xin and L.-F. Shi, “Kalman filter for linear systems with unknown structural parameters,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1852–1856, 2021.
|
[39] |
Y. Liu, B. Lian, C. Tang, and J. Li, “Maximum likelihood principle based adaptive Extended Kalman filter for tightly coupled INS/UWB localization system,” in 2021 IEEE Int. Conf. on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2021, pp. 1–6.
|
[40] |
V. Z. Tadić and A. Doucet, “Asymptotic properties of recursive particle maximum likelihood estimation,” IEEE Trans. Information Theory, vol. 67, no. 3, pp. 1825–1848, 2020.
|
[41] |
R. Mehra, “Approaches to adaptive filtering,” IEEE Trans. Automatic Control, vol. 17, no. 5, pp. 693–698, 1972. doi: 10.1109/TAC.1972.1100100
|
[42] |
R. Kashyap, “Maximum likelihood identification of stochastic linear systems,” IEEE Trans. Automatic Control, vol. 15, no. 1, pp. 25–34, 1970. doi: 10.1109/TAC.1970.1099344
|
[43] |
R. H. Shumway and D. S. Stoffer, “An approach to time smoothing and forecasting using the EM algorithm,” Journal of Time Series Analysis, vol. 3, no. 4, pp. 253–264, 1982. doi: 10.1111/j.1467-9892.1982.tb00349.x
|
[44] |
T. B. Schön, A. Wills, and B. Ninness, “System identification of nonlinear state-space models,” Automatica, vol. 47, no. 1, pp. 39–49, 2011. doi: 10.1016/j.automatica.2010.10.013
|
[45] |
V. A. Bavdekar, A. P. Deshpande, and S. C. Patwardhan, “Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter,” Journal of Process Control, vol. 21, no. 4, pp. 585–601, 2011. doi: 10.1016/j.jprocont.2011.01.001
|
[46] |
Y. Huang, Y. Zhang, B. Xu, Z. Wu, and J. A. Chambers, “A new adaptive extended Kalman filter for cooperative localization,” IEEE Trans. Aerospace and Electronic Systems, vol. 54, no. 1, pp. 353–368, 2017.
|
[47] |
C.-S. Hsieh, “Robust two-stage Kalman filters for systems with unknown inputs,” IEEE Trans. Automatic Control, vol. 45, no. 12, pp. 2374–2378, 2000. doi: 10.1109/9.895577
|
[48] |
X. Song and W. X. Zheng, “A Kalman-filtering derivation of input and state estimation for linear discrete-time systems with direct feedthrough,” Automatica, vol. 161, p. 111453, 2024. doi: 10.1016/j.automatica.2023.111453
|
[49] |
H. Benzerrouk and A. Nebylov, “Integrated navigation system INS/GPS based on joint application of linear and nonlinear filtering,” IFAC Proceedings Volumes, vol. 45, no. 1, pp. 208–213, 2012. doi: 10.3182/20120213-3-IN-4034.00039
|
[50] |
N. Ganganath and H. Leung, “Mobile robot localization using odometry and kinect sensor,” in 2012 IEEE Int. Conf. on Emerging Signal Processing Applications. IEEE, 2012, pp. 91–94.
|
[51] |
R. Hunger, Floating point operations in matrix-vector calculus. Munich University of Technology, Inst. for Circuit Theory and Signal Processing, 2005, vol. 2019.
|
[52] |
K. Y. Leung, Y. Halpern, T. D. Barfoot, and H. H. Liu, “The UTIAS multi-robot cooperative localization and mapping dataset,” The Int. Journal of Robotics Research, vol. 30, no. 8, pp. 969–974, Jul. 2011. doi: 10.1177/0278364911398404
|