Citation: | D. Wang, L. Hu, X. Li, and J. Qiao, “Online fault-tolerant tracking control with adaptive critic for nonaffine nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 215–227, Jan. 2025. doi: 10.1109/JAS.2024.124989 |
[1] |
Y. Li, Y. Liu, and S. Tong, “Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 3131–3145, Jul. 2022. doi: 10.1109/TNNLS.2021.3051030
|
[2] |
L. Yang, X. Wei, and C. Wen, “A security defense method against eavesdroppers in the communication-based train control system,” Chin. J. Electron., vol. 32, no. 5, pp. 992–1001, Sept. 2023. doi: 10.23919/cje.2022.00.248
|
[3] |
M. Zhao, D. Wang, J. Qiao, M. Ha, and J. Ren, “Advanced value iteration for discrete-time intelligent critic control: A survey,” Artif. Intell. Rev., vol. 56, no. 10, pp. 12315–12346, Oct. 2023. doi: 10.1007/s10462-023-10497-1
|
[4] |
L. Wang, Q. Wu, W. Ma, and W. Tang, “Stability improvement for one cycle controlled boost converters based on energy balance principle,” Chin. J. Electron., vol. 32, no. 6, pp. 1293–1303, Nov. 2023. doi: 10.23919/cje.2021.00.204
|
[5] |
L. Xia, Q. Li, R. Song, and H. Modares, “Optimal synchronization control of heterogeneous asymmetric input-constrained unknown nonlinear MASs via reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 520–532, Mar. 2022. doi: 10.1109/JAS.2021.1004359
|
[6] |
D. Wang, N. Gao, D. Liu, J. Li, and F. L. Lewis, “Recent progress in reinforcement learning and adaptive dynamic programming for advanced control applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 18–36, Jan. 2024. doi: 10.1109/JAS.2023.123843
|
[7] |
M. Ha, D. Wang, and D. Liu, “Neural-network-based discounted optimal control via an integrated value iteration with accuracy guarantee,” Neural Netw., vol. 144, pp. 176–186, Dec. 2021. doi: 10.1016/j.neunet.2021.08.025
|
[8] |
J. Li, Z. Xiao, J. Fan, T. Chai, and F. L. Lewis, “Off-policy Q-learning: Solving Nash equilibrium of multi-player games with network-induced delay and unmeasured state,” Automatica, vol. 136, p. 110076, Feb. 2022. doi: 10.1016/j.automatica.2021.110076
|
[9] |
D. Wang and J. Qiao, “Approximate neural optimal control with reinforcement learning for a torsional pendulum device,” Neural Netw., vol. 117, pp. 1–7, Sept. 2019. doi: 10.1016/j.neunet.2019.04.026
|
[10] |
Z. Chen and S. Jagannathan, “Generalized Hamilton-Jacobi-Bellman formulation based neural network control of affine nonlinear discrete-time systems,” IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 90–106, Jan. 2008. doi: 10.1109/TNN.2007.900227
|
[11] |
M. Ha, D. Wang, and D. Liu, “Discounted iterative adaptive critic designs with novel stability analysis for tracking control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1262–1272, Jul. 2022. doi: 10.1109/JAS.2022.105692
|
[12] |
A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 38, no. 4, pp. 943–949, Aug. 2008. doi: 10.1109/TSMCB.2008.926614
|
[13] |
D. Wang, J. Wang, M. Zhao, P. Xin, and J. Qiao, “Adaptive multi-step evaluation design with stability guarantee for discrete-time optimal learning control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1797–1809, Sept. 2023. doi: 10.1109/JAS.2023.123684
|
[14] |
T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1118–1129, Jul. 2012. doi: 10.1109/TNNLS.2012.2196708
|
[15] |
H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy learning algorithm for H∞ state feedback control of unknown affine nonlinear discrete-time systems,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2706–2718, Dec. 2014. doi: 10.1109/TCYB.2014.2313915
|
[16] |
Q. Zhao, J. Si, and J. Sun, “Online reinforcement learning control by direct heuristic dynamic programming: From time-driven to event-driven,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8, pp. 4139–4144, Aug. 2022. doi: 10.1109/TNNLS.2021.3053037
|
[17] |
Y. Yang, W. Gao, H. Modares, and C. Z. Xu, “Robust actor-critic learning for continuous-time nonlinear systems with unmodeled dynamics,” IEEE Trans. Fuzzy Syst., vol. 30, no. 6, pp. 2101–2112, Jun. 2022. doi: 10.1109/TFUZZ.2021.3075501
|
[18] |
J. Liu, N. Zhang, Y. Li, X. Xie, E. Tian, and J. Cao, “Learning-based event-triggered tracking control for nonlinear networked control systems with unmatched disturbance,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 5, pp. 3230–3240, May 2023. doi: 10.1109/TSMC.2022.3224432
|
[19] |
C. Li, J. Ding, F. L. Lewis, and T. Chai, “A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems,” Automatica, vol. 129, p. 109687, Jul. 2021. doi: 10.1016/j.automatica.2021.109687
|
[20] |
D. Wang, M. Zhao, M. Ha, and L. Hu, “Adaptive-critic-based hybrid intelligent optimal tracking for a class of nonlinear discrete-time systems,” Eng. Appl. Artif. Intell., vol. 105, p. 104443, Oct. 2021. doi: 10.1016/j.engappai.2021.104443
|
[21] |
Y. Du and Y. Chen, “Time optimal trajectory planning algorithm for robotic manipulator based on locally chaotic particle swarm optimization,” Chin. J. Electron., vol. 31, no. 5, pp. 906–914, Sept. 2022. doi: 10.1049/cje.2021.00.373
|
[22] |
L. Hu, D. Wang, and J. Qiao, “Static/dynamic event-triggered learning control for constrained nonlinear systems,” Nonlinear Dyn., vol. 112, no. 16, pp. 14159–14174, Aug. 2024. doi: 10.1007/s11071-024-09778-3
|
[23] |
K. G. Vamvoudakis and H. Ferraz, “Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance,” Automatica, vol. 87, pp. 412–420, Jan. 2018. doi: 10.1016/j.automatica.2017.03.013
|
[24] |
D. Wang, L. Hu, M. Zhao, and J. Qiao, “Dual event-triggered constrained control through adaptive critic for discrete-time zero-sum games,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 3, pp. 1584–1595, Mar. 2023. doi: 10.1109/TSMC.2022.3201671
|
[25] |
D. Liu, X. Yang, D. Wang, and Q. Wei, “Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints,” IEEE Trans. Cybern., vol. 45, no. 7, pp. 1372–1385, Jul. 2015. doi: 10.1109/TCYB.2015.2417170
|
[26] |
O. Qasem, M. Davari, W. Gao, D. R. Kirk, and T. Chai, “Hybrid iteration ADP algorithm to solve cooperative, optimal output regulation problem for continuous-time, linear, multiagent systems: Theory and application in islanded modern microgrids with IBRs,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 834–845, Jan. 2024. doi: 10.1109/TIE.2023.3247734
|
[27] |
M. Mottaghi and R. Chhabra, “Robust optimal output-tracking control of constrained mechanical systems with application to autonomous rovers,” IEEE Trans. Control Syst. Technol., vol. 31, no. 1, pp. 83–98, Jan. 2023. doi: 10.1109/TCST.2022.3171687
|
[28] |
S. Zhao, J. Wang, H. Xu, and B. Wang, “Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles,” IEEE Trans. Cybern., vol. 53, no. 2, pp. 913–926, Feb. 2023. doi: 10.1109/TCYB.2022.3192871
|
[29] |
M. Lin, B. Zhao, and D. Liu, “Policy gradient adaptive critic designs for model-free optimal tracking control with experience replay,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 6, pp. 3692–3703, Jun. 2022. doi: 10.1109/TSMC.2021.3071968
|
[30] |
Y. Fu, C. Hong, J. Fu, and T. Chai, “Approximate optimal tracking control of nondifferentiable signals for a class of continuous-time nonlinear systems,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4441–4450, Jun. 2022. doi: 10.1109/TCYB.2020.3027344
|
[31] |
T. Wang, Y. Wang, X. Yang, and J. Yang, “Further results on optimal tracking control for nonlinear systems with nonzero equilibrium via adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4, pp. 1900–1910, Apr. 2023. doi: 10.1109/TNNLS.2021.3105646
|
[32] |
S. Song, M. Zhu, X. Dai, and D. Gong, “Model-free optimal tracking control of nonlinear input-affine discrete-time systems via an iterative deterministic Q-learning algorithm,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 999–1012, Jan. 2024. doi: 10.1109/TNNLS.2022.3178746
|
[33] |
J. Zhang, D. Yang, H. Zhang, Y. Wang, and B. Zhou, “Dynamic event-based tracking control of boiler turbine systems with guaranteed performance,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 4272–4282, Jul. 2024. doi: 10.1109/TASE.2023.3294187
|
[34] |
H. Zhang, Q. Wei, and Y. Luo, “A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 38, no. 4, pp. 937–942, Aug. 2008. doi: 10.1109/TSMCB.2008.920269
|
[35] |
D. Wang, X. Li, M. Zhao, and J. Qiao, “Adaptive critic control design with knowledge transfer for wastewater treatment applications,” IEEE Trans. Industr. Inform., vol. 20, no. 2, pp. 1488–1497, Feb. 2024. doi: 10.1109/TII.2023.3278875
|
[36] |
A. A. Ladel, A. Benzaouia, R. Outbib, and M. Ouladsine, “Integrated state/fault estimation and fault-tolerant control design for switched T-S fuzzy systems with sensor and actuator faults,” IEEE Trans. Fuzzy Syst., vol. 30, no. 8, pp. 3211–3223, Aug. 2022. doi: 10.1109/TFUZZ.2021.3107751
|
[37] |
Y. Guo and X. He, “Active diagnosis of incipient actuator faults for stochastic systems,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 996–1005, Jan. 2024. doi: 10.1109/TIE.2023.3247778
|
[38] |
D. Ye and G. H. Yang, “Adaptive fault-tolerant tracking control against actuator faults with application to flight control,” IEEE Trans. Control Syst. Technol., vol. 14, no. 6, pp. 1088–1096, Nov. 2006. doi: 10.1109/TCST.2006.883191
|
[39] |
Q. Wei, H. Li, T. Li, and F. Wang, “A novel data-based fault-tolerant control method for multicontroller linear systems via distributed policy iteration,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 5, pp. 3176–3186, May 2023. doi: 10.1109/TSMC.2022.3223910
|
[40] |
T. Li, W. Bai, Q. Liu, Y. Long, and C. L. P. Chen, “Distributed fault-tolerant containment control protocols for the discrete-time multiagent systems via reinforcement learning method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 3979–3991, Aug. 2023. doi: 10.1109/TNNLS.2021.3121403
|
[41] |
B. F. Yue and W. W. Che, “Data-driven dynamic event-triggered fault-tolerant platooning control,” IEEE Trans. Industr. Inform., vol. 19, no. 7, pp. 8418–8426, Jul. 2023. doi: 10.1109/TII.2022.3217470
|
[42] |
C. Treesatayapun, “Discrete-time robust event-triggered actuator fault-tolerant control based on adaptive networks and reinforcement learning,” Neural Netw., vol. 166, pp. 541–554, Sept. 2023. doi: 10.1016/j.neunet.2023.08.003
|
[43] |
H. Lin, B. Zhao, D. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225
|