A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
D. Wang, L. Hu, X. Li, and J. Qiao, “Online fault-tolerant tracking control with adaptive critic for nonaffine nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 215–227, Jan. 2025. doi: 10.1109/JAS.2024.124989
Citation: D. Wang, L. Hu, X. Li, and J. Qiao, “Online fault-tolerant tracking control with adaptive critic for nonaffine nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 215–227, Jan. 2025. doi: 10.1109/JAS.2024.124989

Online Fault-Tolerant Tracking Control With Adaptive Critic for Nonaffine Nonlinear Systems

doi: 10.1109/JAS.2024.124989
Funds:  This work was supported in part by the National Natural Science Foundation of China (62222301, 62373012, 62473012, 62021003), the National Science and Technology Major Project (2021ZD0112302, 2021ZD0112301), and the Beijing Natural Science Foundation (JQ19013)
More Information
  • In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults. First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network (NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control, respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle. The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.

     

  • loading
  • [1]
    Y. Li, Y. Liu, and S. Tong, “Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 3131–3145, Jul. 2022. doi: 10.1109/TNNLS.2021.3051030
    [2]
    L. Yang, X. Wei, and C. Wen, “A security defense method against eavesdroppers in the communication-based train control system,” Chin. J. Electron., vol. 32, no. 5, pp. 992–1001, Sept. 2023. doi: 10.23919/cje.2022.00.248
    [3]
    M. Zhao, D. Wang, J. Qiao, M. Ha, and J. Ren, “Advanced value iteration for discrete-time intelligent critic control: A survey,” Artif. Intell. Rev., vol. 56, no. 10, pp. 12315–12346, Oct. 2023. doi: 10.1007/s10462-023-10497-1
    [4]
    L. Wang, Q. Wu, W. Ma, and W. Tang, “Stability improvement for one cycle controlled boost converters based on energy balance principle,” Chin. J. Electron., vol. 32, no. 6, pp. 1293–1303, Nov. 2023. doi: 10.23919/cje.2021.00.204
    [5]
    L. Xia, Q. Li, R. Song, and H. Modares, “Optimal synchronization control of heterogeneous asymmetric input-constrained unknown nonlinear MASs via reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 520–532, Mar. 2022. doi: 10.1109/JAS.2021.1004359
    [6]
    D. Wang, N. Gao, D. Liu, J. Li, and F. L. Lewis, “Recent progress in reinforcement learning and adaptive dynamic programming for advanced control applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 18–36, Jan. 2024. doi: 10.1109/JAS.2023.123843
    [7]
    M. Ha, D. Wang, and D. Liu, “Neural-network-based discounted optimal control via an integrated value iteration with accuracy guarantee,” Neural Netw., vol. 144, pp. 176–186, Dec. 2021. doi: 10.1016/j.neunet.2021.08.025
    [8]
    J. Li, Z. Xiao, J. Fan, T. Chai, and F. L. Lewis, “Off-policy Q-learning: Solving Nash equilibrium of multi-player games with network-induced delay and unmeasured state,” Automatica, vol. 136, p. 110076, Feb. 2022. doi: 10.1016/j.automatica.2021.110076
    [9]
    D. Wang and J. Qiao, “Approximate neural optimal control with reinforcement learning for a torsional pendulum device,” Neural Netw., vol. 117, pp. 1–7, Sept. 2019. doi: 10.1016/j.neunet.2019.04.026
    [10]
    Z. Chen and S. Jagannathan, “Generalized Hamilton-Jacobi-Bellman formulation based neural network control of affine nonlinear discrete-time systems,” IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 90–106, Jan. 2008. doi: 10.1109/TNN.2007.900227
    [11]
    M. Ha, D. Wang, and D. Liu, “Discounted iterative adaptive critic designs with novel stability analysis for tracking control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1262–1272, Jul. 2022. doi: 10.1109/JAS.2022.105692
    [12]
    A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 38, no. 4, pp. 943–949, Aug. 2008. doi: 10.1109/TSMCB.2008.926614
    [13]
    D. Wang, J. Wang, M. Zhao, P. Xin, and J. Qiao, “Adaptive multi-step evaluation design with stability guarantee for discrete-time optimal learning control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1797–1809, Sept. 2023. doi: 10.1109/JAS.2023.123684
    [14]
    T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1118–1129, Jul. 2012. doi: 10.1109/TNNLS.2012.2196708
    [15]
    H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy learning algorithm for H state feedback control of unknown affine nonlinear discrete-time systems,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2706–2718, Dec. 2014. doi: 10.1109/TCYB.2014.2313915
    [16]
    Q. Zhao, J. Si, and J. Sun, “Online reinforcement learning control by direct heuristic dynamic programming: From time-driven to event-driven,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8, pp. 4139–4144, Aug. 2022. doi: 10.1109/TNNLS.2021.3053037
    [17]
    Y. Yang, W. Gao, H. Modares, and C. Z. Xu, “Robust actor-critic learning for continuous-time nonlinear systems with unmodeled dynamics,” IEEE Trans. Fuzzy Syst., vol. 30, no. 6, pp. 2101–2112, Jun. 2022. doi: 10.1109/TFUZZ.2021.3075501
    [18]
    J. Liu, N. Zhang, Y. Li, X. Xie, E. Tian, and J. Cao, “Learning-based event-triggered tracking control for nonlinear networked control systems with unmatched disturbance,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 5, pp. 3230–3240, May 2023. doi: 10.1109/TSMC.2022.3224432
    [19]
    C. Li, J. Ding, F. L. Lewis, and T. Chai, “A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems,” Automatica, vol. 129, p. 109687, Jul. 2021. doi: 10.1016/j.automatica.2021.109687
    [20]
    D. Wang, M. Zhao, M. Ha, and L. Hu, “Adaptive-critic-based hybrid intelligent optimal tracking for a class of nonlinear discrete-time systems,” Eng. Appl. Artif. Intell., vol. 105, p. 104443, Oct. 2021. doi: 10.1016/j.engappai.2021.104443
    [21]
    Y. Du and Y. Chen, “Time optimal trajectory planning algorithm for robotic manipulator based on locally chaotic particle swarm optimization,” Chin. J. Electron., vol. 31, no. 5, pp. 906–914, Sept. 2022. doi: 10.1049/cje.2021.00.373
    [22]
    L. Hu, D. Wang, and J. Qiao, “Static/dynamic event-triggered learning control for constrained nonlinear systems,” Nonlinear Dyn., vol. 112, no. 16, pp. 14159–14174, Aug. 2024. doi: 10.1007/s11071-024-09778-3
    [23]
    K. G. Vamvoudakis and H. Ferraz, “Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance,” Automatica, vol. 87, pp. 412–420, Jan. 2018. doi: 10.1016/j.automatica.2017.03.013
    [24]
    D. Wang, L. Hu, M. Zhao, and J. Qiao, “Dual event-triggered constrained control through adaptive critic for discrete-time zero-sum games,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 3, pp. 1584–1595, Mar. 2023. doi: 10.1109/TSMC.2022.3201671
    [25]
    D. Liu, X. Yang, D. Wang, and Q. Wei, “Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints,” IEEE Trans. Cybern., vol. 45, no. 7, pp. 1372–1385, Jul. 2015. doi: 10.1109/TCYB.2015.2417170
    [26]
    O. Qasem, M. Davari, W. Gao, D. R. Kirk, and T. Chai, “Hybrid iteration ADP algorithm to solve cooperative, optimal output regulation problem for continuous-time, linear, multiagent systems: Theory and application in islanded modern microgrids with IBRs,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 834–845, Jan. 2024. doi: 10.1109/TIE.2023.3247734
    [27]
    M. Mottaghi and R. Chhabra, “Robust optimal output-tracking control of constrained mechanical systems with application to autonomous rovers,” IEEE Trans. Control Syst. Technol., vol. 31, no. 1, pp. 83–98, Jan. 2023. doi: 10.1109/TCST.2022.3171687
    [28]
    S. Zhao, J. Wang, H. Xu, and B. Wang, “Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles,” IEEE Trans. Cybern., vol. 53, no. 2, pp. 913–926, Feb. 2023. doi: 10.1109/TCYB.2022.3192871
    [29]
    M. Lin, B. Zhao, and D. Liu, “Policy gradient adaptive critic designs for model-free optimal tracking control with experience replay,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 6, pp. 3692–3703, Jun. 2022. doi: 10.1109/TSMC.2021.3071968
    [30]
    Y. Fu, C. Hong, J. Fu, and T. Chai, “Approximate optimal tracking control of nondifferentiable signals for a class of continuous-time nonlinear systems,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4441–4450, Jun. 2022. doi: 10.1109/TCYB.2020.3027344
    [31]
    T. Wang, Y. Wang, X. Yang, and J. Yang, “Further results on optimal tracking control for nonlinear systems with nonzero equilibrium via adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4, pp. 1900–1910, Apr. 2023. doi: 10.1109/TNNLS.2021.3105646
    [32]
    S. Song, M. Zhu, X. Dai, and D. Gong, “Model-free optimal tracking control of nonlinear input-affine discrete-time systems via an iterative deterministic Q-learning algorithm,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 999–1012, Jan. 2024. doi: 10.1109/TNNLS.2022.3178746
    [33]
    J. Zhang, D. Yang, H. Zhang, Y. Wang, and B. Zhou, “Dynamic event-based tracking control of boiler turbine systems with guaranteed performance,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 4272–4282, Jul. 2024. doi: 10.1109/TASE.2023.3294187
    [34]
    H. Zhang, Q. Wei, and Y. Luo, “A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 38, no. 4, pp. 937–942, Aug. 2008. doi: 10.1109/TSMCB.2008.920269
    [35]
    D. Wang, X. Li, M. Zhao, and J. Qiao, “Adaptive critic control design with knowledge transfer for wastewater treatment applications,” IEEE Trans. Industr. Inform., vol. 20, no. 2, pp. 1488–1497, Feb. 2024. doi: 10.1109/TII.2023.3278875
    [36]
    A. A. Ladel, A. Benzaouia, R. Outbib, and M. Ouladsine, “Integrated state/fault estimation and fault-tolerant control design for switched T-S fuzzy systems with sensor and actuator faults,” IEEE Trans. Fuzzy Syst., vol. 30, no. 8, pp. 3211–3223, Aug. 2022. doi: 10.1109/TFUZZ.2021.3107751
    [37]
    Y. Guo and X. He, “Active diagnosis of incipient actuator faults for stochastic systems,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 996–1005, Jan. 2024. doi: 10.1109/TIE.2023.3247778
    [38]
    D. Ye and G. H. Yang, “Adaptive fault-tolerant tracking control against actuator faults with application to flight control,” IEEE Trans. Control Syst. Technol., vol. 14, no. 6, pp. 1088–1096, Nov. 2006. doi: 10.1109/TCST.2006.883191
    [39]
    Q. Wei, H. Li, T. Li, and F. Wang, “A novel data-based fault-tolerant control method for multicontroller linear systems via distributed policy iteration,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 5, pp. 3176–3186, May 2023. doi: 10.1109/TSMC.2022.3223910
    [40]
    T. Li, W. Bai, Q. Liu, Y. Long, and C. L. P. Chen, “Distributed fault-tolerant containment control protocols for the discrete-time multiagent systems via reinforcement learning method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 3979–3991, Aug. 2023. doi: 10.1109/TNNLS.2021.3121403
    [41]
    B. F. Yue and W. W. Che, “Data-driven dynamic event-triggered fault-tolerant platooning control,” IEEE Trans. Industr. Inform., vol. 19, no. 7, pp. 8418–8426, Jul. 2023. doi: 10.1109/TII.2022.3217470
    [42]
    C. Treesatayapun, “Discrete-time robust event-triggered actuator fault-tolerant control based on adaptive networks and reinforcement learning,” Neural Netw., vol. 166, pp. 541–554, Sept. 2023. doi: 10.1016/j.neunet.2023.08.003
    [43]
    H. Lin, B. Zhao, D. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (36) PDF downloads(27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return