A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
F. Song, N. Cui, S. Chen, K. Zhang, Y. Liu, X. Chen, and J. Tan, “Beyond performance of learning control subject to uncertainties and noise: A frequency-domain approach applied to wafer stages,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124968
Citation: F. Song, N. Cui, S. Chen, K. Zhang, Y. Liu, X. Chen, and J. Tan, “Beyond performance of learning control subject to uncertainties and noise: A frequency-domain approach applied to wafer stages,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124968

Beyond Performance of Learning Control Subject to Uncertainties and Noise: A Frequency-Domain Approach Applied to Wafer Stages

doi: 10.1109/JAS.2024.124968
Funds:  This work was supported by National Natural Science Foundation of China (52375530, 52075132), Natural Science Foundation of Heilongjiang Province (YQ2022E025), State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment (Guangdong University of Technology) (JMDZ202312), Fundamental Research Funds for the Central Universities (HIT.OCEF.2024034), China Postdoctoral Science Foundation (2019M651278, 2020T130155), Heilongjiang Province Postdoctoral Science Foundation (LBH-Z19066), and Space Drive and Manipulation Mechanism Laboratory of BICE and National Key Laboratory of Space Intelligent Control, No BICE-SDMM-2024-01
More Information
  • The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control (ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer (ESO) based adaptive ILC approach is proposed in the frequency domain. Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method.

     

  • loading
  • [1]
    M. F. Heertjes, H. Butler, N. J. Dirkx, S. H. Van Der Meulen, R. Ahlawat, K. O’Brien, J. Simonelli, K.-T. Teng, and Y. Zhao, “Control of wafer scanners: Methods and developments,” in Proc. American Control Conf., Denver, USA, 2020, pp. 3686–3703.
    [2]
    M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Fundamental Limitations in Filtering and Control, London, UK: Springer, 1997.
    [3]
    F. Song, Y. Liu, Y. Dong, X. Chen, and J. Tan, “Motion control of wafer scanners in lithography systems: From setpoint generation to multistage coordination,” IEEE Trans. Instrum. Meas., vol. 73, p. 7508040, Jun. 2024.
    [4]
    J. Van Zundert and T. Oomen, “On inversion-based approaches for feedforward and ILC,” Mechatronics, vol. 50, pp. 282–291, Apr. 2018. doi: 10.1016/j.mechatronics.2017.09.010
    [5]
    L. Dai, X. Li, Y. Zhu, and M. Zhang, “Quantitative tracking error analysis and feedforward compensation under different model-based feedforward controllers in different control architectures,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 381–390, Jan. 2021. doi: 10.1109/TIE.2019.2960717
    [6]
    S. Devasia, “Should model-based inverse inputs be used as feed forward under plant uncertainty?,” IEEE Trans. Autom. Control, vol. 47, no. 11, pp. 1865–1871, Nov. 2002.
    [7]
    J. Van Zundert and T. Oomen, “Inverting nonminimum-phase systems from the perspectives of feedforward and ILC,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12101–12106, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.2135
    [8]
    M. F. Heertjes, “Data-based motion control of wafer scanners,” IFAC-PapersOnLine, vol. 49, no. 13, pp. 1–12, 2016. doi: 10.1016/j.ifacol.2016.07.918
    [9]
    S. Mishra and M. Tomizuka, “Projection-based iterative learning control for wafer scanner systems,” IEEE/ASME Trans. Mech., vol. 14, no. 3, pp. 388–393, Jun. 2009. doi: 10.1109/TMECH.2008.2007302
    [10]
    F. Song, Y. Liu, J. Cao, L. Li, and J. Tan, “Model-based ILC with a modified Q-filter for complex motion systems: Practical considerations and experimental verification on a wafer stage,” Complexity, vol. 2018, no. 1, p. 5406035, Jan. 2018. doi: 10.1155/2018/5406035
    [11]
    Z.-S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Inf. Sci., vol. 235, pp. 3–35, Jun. 2013. doi: 10.1016/j.ins.2012.07.014
    [12]
    R. Chi, H. Li, D. Shen, Z. Hou, and B. Huang, “Enhanced P-type control: Indirect adaptive learning from set-point updates,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1600–1613, Mar. 2023. doi: 10.1109/TAC.2022.3154347
    [13]
    X. Ge, J. L. Stein, and T. Ersal, “A frequency-dependent filter design approach for norm-optimal iterative learning control and its fundamental trade-off between robustness, convergence speed, and steady-state error,” J. Dyn. Syst., Meas., Control, vol. 140, no. 2, p. 021004, Feb. 2018. doi: 10.1115/1.4037271
    [14]
    S. Tien, Q. Zou, and S. Devasia, “Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation,” IEEE Trans. Control Syst. Technol., vol. 13, no. 6, pp. 921–931, Nov. 2005. doi: 10.1109/TCST.2005.854334
    [15]
    X. Ge, J. L. Stein, and T. Ersal, “Frequency-domain analysis of robust monotonic convergence of norm-optimal iterative learning control,” IEEE Trans. Control Syst. Technol., vol. 26, no. 2, pp. 637–651, Mar. 2018. doi: 10.1109/TCST.2017.2692729
    [16]
    A. Tayebi, S. Abdul, M. B. Zaremba, and Y. Ye, “Robust iterative learning control design: Application to a robot manipulator,” IEEE/ASME Trans. Mech., vol. 13, no. 5, pp. 608–613, Oct. 2008. doi: 10.1109/TMECH.2008.2004627
    [17]
    C.-Y. Lin, L. Sun, and M. Tomizuka, “Matrix factorization for design of Q-filter in iterative learning control,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 6076–6082.
    [18]
    A. A. Armstrong, A. J. Wagoner Johnson, and A. G. Alleyne, “An improved approach to iterative learning control for uncertain systems,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 546–555, Mar. 2021. doi: 10.1109/TCST.2019.2952327
    [19]
    X. Fu, X. Yang, P. Zanchetta, Y. Liu, C. Ding, M. Tang, and Z. Chen, “Frequency-domain data-driven adaptive iterative learning control approach: With application to wafer stage,” IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9309–9318, Oct. 2021. doi: 10.1109/TIE.2020.3022503
    [20]
    R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach. 2nd ed. Hoboken, USA: John Wiley and Sons, 2012.
    [21]
    R. De Rozario and T. Oomen, “Frequency response function-based learning control: Analysis and design for finite-time convergence,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1807–1814, Mar. 2023. doi: 10.1109/TAC.2022.3159489
    [22]
    R. Chi, B. Huang, Z. Hou, and S. Jin, “Data-driven high-order terminal iterative learning control with a faster convergence speed,” Int. J. Robust Nonlinear Control, vol. 28, no. 1, pp. 103–119, Jan. 2018. doi: 10.1002/rnc.3861
    [23]
    K.-S. Kim and Q. Zou, “A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems,” IEEE/ASME Trans. Mech., vol. 18, no. 6, pp. 1767–1777, Dec. 2013. doi: 10.1109/TMECH.2012.2212912
    [24]
    R. de Rozario and T. Oomen, “Data-driven iterative inversion-based control: Achieving robustness through nonlinear learning,” Automatica, vol. 107, pp. 342–352, Sep. 2019. doi: 10.1016/j.automatica.2019.05.062
    [25]
    Z. Zhang and Q. Zou, “Optimal data-driven difference-inversion-based iterative control: High-speed nanopositioning tracking example,” IEEE Trans. Control Syst. Technol., vol. 31, no. 1, pp. 144–154, Jan. 2023. doi: 10.1109/TCST.2022.3168496
    [26]
    S. Devasia, “Iterative machine learning for output tracking,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 516–526, Mar. 2019. doi: 10.1109/TCST.2017.2772807
    [27]
    S. Ito, H. W. Yoo, and G. Schitter, “Comparison of modeling-free learning control algorithms for galvanometer scanner’s periodic motion,” in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics, Munich, Germany, 2017, pp. 1357–1362.
    [28]
    J. Wang, D. Huang, S. Fang, Y. Wang, and W. Xu, “Model predictive control for ARC motors using extended state observer and iterative learning methods,” IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 2217–2226, Sep. 2022.
    [29]
    Y. Hui, R. Chi, B. Huang, and Z. Hou, “Extended state observer-based data-driven iterative learning control for permanent magnet linear motor with initial shifts and disturbances,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 3, pp. 1881–1891, Mar. 2021. doi: 10.1109/TSMC.2019.2907379
    [30]
    G. Zhang, X. Zhao, Q. Wang, D. Ding, B. Li, G. Wang, and D. Xu, “PR internal mode extended state observer-based iterative learning control for thrust ripple suppression of PMLSM drives,” IEEE Trans. Power Electron., vol. 39, no. 8, pp. 10095–10105, Aug. 2024. doi: 10.1109/TPEL.2024.3395691
    [31]
    D. Huang, D. Min, Y. Jian, and Y. Li, “Current-cycle iterative learning control for high-precision position tracking of piezoelectric actuator system via active disturbance rejection control for hysteresis compensation,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8680–8690, Oct. 2020. doi: 10.1109/TIE.2019.2946554
    [32]
    F. Boeren, A. Lanzon, and T. Oomen, “Iterative identification and control using non-normalized coprime factors with application in wafer stage motion control,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 413–424, Mar. 2020. doi: 10.1109/TCST.2018.2877680
    [33]
    R. De Rozario, A. Fleming, and T. Oomen, “Finite-time learning control using frequency response data with application to a nanopositioning stage,” IEEE/ASME Trans. Mech., vol. 24, no. 5, pp. 2085–2096, Oct. 2019. doi: 10.1109/TMECH.2019.2931407
    [34]
    Z. Gao, “Scaling and bandwidth-parameterization based controller tuning,” in Proc. American Control Conf., Denver, USA, 2003, pp. 4989–4996.
    [35]
    B. Delyon and A. Juditsky, “Accelerated stochastic approximation,” SIAM J. Optim., vol. 3, no. 4, pp. 868–881, Nov. 1993. doi: 10.1137/0803045
    [36]
    F. Song, Y. Liu, W. Jin, J. Tan, and W. He, “Data-driven feedforward learning with force ripple compensation for wafer stages: A variable-gain robust approach,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 4, pp. 1594–1608, Apr. 2022. doi: 10.1109/TNNLS.2020.3042975

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (15) PDF downloads(6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return