IEEE/CAA Journal of Automatica Sinica
Citation: | J. Jiang, N. Xia, and S. Zhou, “A multi-type feature fusion network based on importance weighting for occluded human pose estimation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 4, pp. 789–805, Apr. 2025. doi: 10.1109/JAS.2024.124953 |
[1] |
K. Lee, W. Kim, and S. Lee, “From human pose similarity metric to 3D human pose estimator: Temporal propagating LSTM networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2, pp. 1781–1797, Feb. 2023. doi: 10.1109/TPAMI.2022.3164344
|
[2] |
J. H. White and R. W. Beard, “An iterative pose estimation algorithm based on epipolar geometry with application to multi-target tracking,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 942–953, Jul. 2020. doi: 10.1109/JAS.2020.1003222
|
[3] |
Y. Wu, H. Ding, M. Gong, A. K. Qin, W. Ma, Q. Miao, and K. C. Tan, “Evolutionary multiform optimization with two-stage bidirectional knowledge transfer strategy for point cloud registration,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 62–76, Feb. 2024. doi: 10.1109/TEVC.2022.3215743
|
[4] |
Y. Wu, J. Liu, Y. Yuan, X. Hu, X. Fan, K. Tu, M. Gong, Q. Miao, and W. Ma, “Correspondence-free point cloud registration via feature interaction and dual branch [application notes],” IEEE Comput. Intell. Mag., vol. 18, no. 4, pp. 66–79, Nov. 2023. doi: 10.1109/MCI.2023.3304144
|
[5] |
S. Kreiss, L. Bertoni, and A. Alahi, “OpenPifPaf: Composite fields for semantic keypoint detection and spatio-temporal association,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 13498–13511, Aug. 2022. doi: 10.1109/TITS.2021.3124981
|
[6] |
Z. Huo, H. Jin, Y. Qiao, and F. Luo, “Deep high-resolution network with double attention residual blocks for human pose estimation,” IEEE Access, vol. 8, pp. 224947–224957, Jan. 2020. doi: 10.1109/ACCESS.2020.3044885
|
[7] |
N. Saini, E. Bonetto, E. Price, A. Ahmad, and M. J. Black, “AirPose: Multi-view fusion network for aerial 3D human pose and shape estimation,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4805–4812, Apr. 2022. doi: 10.1109/LRA.2022.3145494
|
[8] |
S. Sun, R. Liu, and X. Yang, “Depth-hand: 3D Hand keypoint detection with dense depth estimation,” IEEE Signal Process. Lett., vol. 30, pp. 962–966, 2023.
|
[9] |
Y. Gao, Z. Kuang, G. Li, W. Zhang, and L. Lin, “Hierarchical reasoning network for human-object interaction detection,” IEEE Trans. Image Process., vol. 30, pp. 8306–8317, 2021.
|
[10] |
Y. Lu, G. Chen, C. Pang, H. Zhang, and B. Zhang, “Subject-specific human modeling for human pose estimation,” IEEE Trans. Hum. Mach. Syst., vol. 53, no. 1, pp. 54–64, Feb. 2023. doi: 10.1109/THMS.2022.3195952
|
[11] |
Y. Yuan, Y. Wu, X. Fan, M. Gong, W. Ma, and Q. Miao, “EGST: Enhanced geometric structure transformer for point cloud registration,” IEEE Trans. Vis. Comput. Graph., vol. 30, no. 9, pp. 6222–6234, Sep. 2024. doi: 10.1109/TVCG.2023.3329578
|
[12] |
B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and tracking,” in Proc. 15th European Conf. Computer Vision, Munich, Germany, 2018, pp. 472–487.
|
[13] |
S. Peng, X. Zhou, Y. Liu, H. Lin, Q. Huang, and H. Bao, “PVNet: Pixel-wise voting network for 6DoF object pose estimation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6, pp. 3212–3223, Jun. 2022. doi: 10.1109/TPAMI.2020.3047388
|
[14] |
J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang, W. Liu, and B. Xiao, “Deep high-resolution representation learning for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, pp. 3349–3364, Oct. 2021. doi: 10.1109/TPAMI.2020.2983686
|
[15] |
T. Zhang, J. Lian, J. Wen, and C. L. P. Chen, “Multi-person pose estimation in the wild: Using adversarial method to train a top-down pose estimation network,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 7, pp. 3919–3929, Jul. 2023. doi: 10.1109/TSMC.2023.3234611
|
[16] |
L. Zhou, Y. Chen, and J. Wang, “Progressive direction-aware pose gram mar for human pose estimation,” IEEE Trans. Biom. Behav. Identity Sci., vol. 5, no. 4, pp. 593–605, Oct. 2023. doi: 10.1109/TBIOM.2023.3315509
|
[17] |
G. Kim, H. Kim, K. Kong, J.-W. Song, and S.-J. Kang, “Human body-aware feature extractor using attachable feature corrector for human pose estimation,” IEEE Trans. Multimedia, vol. 25, pp. 5789–5799, Jan. 2023. doi: 10.1109/TMM.2022.3199098
|
[18] |
Z. Zhang, M. Liu, J. Shen, Y. Cheng, and S. Wang, “Lightweight whole-body human pose estimation with two-stage refinement training strategy,” IEEE Trans. Hum. Mach. Syst., vol. 54, no. 1, pp. 121–130, Feb. 2024. doi: 10.1109/THMS.2024.3349652
|
[19] |
A. M. Hafiz, M. Hassaballah, A. Alqahtani, S. Alsubai, and M. A. Hameed, “Reinforcement learning with an ensemble of binary action deep Q-networks,” Comput. Syst. Sci. Eng., vol. 46, no. 3, pp. 2651–2666, Apr. 2023. doi: 10.32604/csse.2023.031720
|
[20] |
Y. Liu and J. Hua, “L-HRNet: A Lightweight high-resolution network for human pose estimation,” in Proc. 8th Int. Conf. Intelligent Informatics and Biomedical Sciences, Okinawa, Japan, 2023, pp. 219–224.
|
[21] |
Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Realtime multi-person 2D pose estimation using part affinity fields,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 172–186, Jan. 2021. doi: 10.1109/TPAMI.2019.2929257
|
[22] |
Z. Zhang, Y. Luo, and J. Gou, “Double anchor embedding for accurate multi-person 2D pose estimation,” Image Vis. Comput., vol. 111, p. 104198, Jul. 2021. doi: 10.1016/j.imavis.2021.104198
|
[23] |
L. Ke, M.-C. Chang, H. Qi, and S. Lyu, “DetPoseNet: Improving multi-person pose estimation via coarse-pose filtering,” IEEE Trans. Image Process., vol. 31, pp. 2782–2795, Apr. 2022. doi: 10.1109/TIP.2022.3161081
|
[24] |
H.-S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, Y.-L. Li, and C. Lu, “AlphaPose: Whole-body regional multi-person pose estimation and tracking in real-time,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 7157–7173, Jun. 2023. doi: 10.1109/TPAMI.2022.3222784
|
[25] |
Y.-J. Wang, Y.-M. Luo, G.-H. Bai, and J.-M. Guo, “UformPose: A U-shaped hierarchical multi-scale keypoint-aware framework for human pose estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 4, pp. 1697–1709, Apr. 2023. doi: 10.1109/TCSVT.2022.3213206
|
[26] |
L. Zhao, J. Xu, C. Gong, J. Yang, W. Zuo, and X. Gao, “Learning to acquire the quality of human pose estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 4, pp. 1555–1568, Apr. 2021. doi: 10.1109/TCSVT.2020.3005522
|
[27] |
M. Ghafoor and A. Mahmood, “Quantification of occlusion handling capability of a 3D human pose estimation framework,” IEEE Trans. Multimedia, vol. 25, pp. 3311–3318, Jan. 2023. doi: 10.1109/TMM.2022.3158068
|
[28] |
M. C. F. Macedo and A. L. Apolinário, “Occlusion handling in augmented reality: Past, present and future,” IEEE Trans. Vis. Comput. Graph., vol. 29, no. 2, pp. 1590–1609, Feb. 2023. doi: 10.1109/TVCG.2021.3117866
|
[29] |
D. Poux, B. Allaert, N. Ihaddadene, I. M. Bilasco, C. Djeraba, and M. Bennamoun, “Dynamic facial expression recognition under partial occlusion with optical flow reconstruction,” IEEE Trans. Image Process., vol. 31, pp. 446–457, Jan. 2022. doi: 10.1109/TIP.2021.3129120
|
[30] |
Z. Su, L. Xu, D. Zhong, Z. Li, F. Deng, S. Quan, and L. Fang, “RobustFusion: Robust volumetric performance reconstruction under human-object interactions from monocular RGBD stream,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 5, pp. 6196–6213, May 2023.
|
[31] |
G. A. Wang, S. Yang, H. Liu, Z. Wang, Y. Yang, S. Wang, G. Yu, E. Zhou, and J. Sun, “High-order information matters: Learning relation and topology for occluded person Re-identification,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 6448–6457.
|
[32] |
Q. Li, Z. Zhang, F. Zhang, and F. Xiao, “HRNeXt: High-resolution context network for crowd pose estimation,” IEEE Trans. Multimedia, vol. 25, pp. 1521–1528, Jan. 2023. doi: 10.1109/TMM.2023.3248144
|
[33] |
Y. Liu, “Study on human pose estimation based on channel and spatial attention,” in Proc. 3rd Int. Conf. Consumer Electronics and Computer Engineering, Guangzhou, China, 2023, pp. 47–50.
|
[34] |
W. Yu, Y. Li, R. Wang, W. Cao, and W. Xiang, “PCFN: Progressive cross-modal fusion network for human pose transfer,” IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 7, pp. 3369–3382, Jul. 2023. doi: 10.1109/TCSVT.2022.3233060
|
[35] |
V. Crescitelli, A. Kosuge, and T. Oshima, “POISON: Human pose estimation in insufficient lighting conditions using sensor fusion,” IEEE Trans. Instrum. Meas., vol. 70, p. 2504408, 2021.
|
[36] |
S. Kim, S. Kang, H. Choi, S. S. Kim, and K. Seo, “Keypoint aware robust representation for transformer-based re-identification of occluded person,” IEEE Signal Process. Lett., vol. 30, pp. 65–69, 2023.
|
[37] |
S. W. Chu, C. Zhang, Y. Song, and W. Cai, “Channel-position self-attention with query refinement skeleton graph neural network in human pose estimation,” in Proc. IEEE Int. Conf. Image Processing, Bordeaux, France, 2022, pp. 971–975.
|
[38] |
L. Rui, Y. Gao, and H. Ren, “EDite-HRNet: Enhanced dynamic lightweight high-resolution network for human pose estimation,” IEEE Access, vol. 11, pp. 95948–95957, Aug. 2023. doi: 10.1109/ACCESS.2023.3310817
|
[39] |
X.-W. Yu and G.-S. Chen, “HRPoseFormer: High-resolution transformer for human pose estimation via multi-scale token aggregation,” in Proc. IEEE 16th Int. Conf. Solid-State & Integrated Circuit Technology, Nanjing, China, 2022, pp. 1–3.
|
[40] |
J. Li and M. Wang, “Multi-person pose estimation with accurate heatmap regression and greedy association,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 8, pp. 5521–5535, Aug. 2022. doi: 10.1109/TCSVT.2022.3153044
|
[41] |
T. Zou, G. Chen, Z. Li, W. He, S. Qu, S. Gu, and A. Knoll, “KAM-Net: Keypoint-aware and keypoint-matching network for vehicle detection from 2-D point cloud,” IEEE Trans. Artif. Intell., vol. 3, no. 2, pp. 207–217, Apr. 2022. doi: 10.1109/TAI.2021.3112945
|
[42] |
B. A. Pearlmutter and P. Sanatchandran, “Comments on “Dynamic programming approach to optimal weight selection in multilayer neural networks” [with reply],” IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 1028–1029, Nov. 1992. doi: 10.1109/72.165609
|
[43] |
L. Duan, F. Duan, F. Chapeau-Blondeau, and D. Abbott, “Noise-boosted backpropagation learning of feedforward threshold neural networks for function approximation,” IEEE Trans. Instrum. Meas., vol. 70, p. 1010612, 2021.
|
[44] |
C. Li, G. Chen, G. Liang, and Z. Y. Dong, “A novel high-performance deep learning framework for load recognition: Deep-shallow model based on fast backpropagation,” IEEE Trans. Power Syst., vol. 37, no. 3, pp. 1718–1729, May 2022. doi: 10.1109/TPWRS.2021.3114416
|
[45] |
Z.-C. Fan, T.-S. T. Chan, Y.-H. Yang, and J.-S. R. Jang, “Backpropagation with N-D vector-valued neurons using arbitrary bilinear products,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2638–2652, Jul. 2020.
|
[46] |
R. Wang, C. Huang and X. Wang, “Global relation reasoning graph convolutional networks for human pose estimation,” IEEE Access, vol. 8, pp. 38472–38480, Feb. 2020. doi: 10.1109/ACCESS.2020.2973039
|
[47] |
X. Yang, S. Li, S. Sun, and J. Yan, “Anti-occlusion infrared aerial target recognition with multisemantic graph skeleton model,” IEEE Trans. Geosci. Remote Sens., vol. 60, p. 5629813, 2022.
|
[48] |
S. Zhang, W. Zhao, Z. Guan, X. Peng, and J. Peng, “Keypoint-graph-driven learning framework for object pose estimation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Nashville, USA, 2021, pp. 1065–1073.
|
[49] |
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Proc. 13th European Conf. Computer Vision, Zurich, Switzerland, 2014, pp. 740–755.
|
[50] |
L. Xu, S. Jin, W. Liu, C. Qian, W. Ouyang, P. Luo, and X. Wang, “ZoomNAS: Searching for whole-body human pose estimation in the wild,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 5296–5313, Apr. 2023.
|
[51] |
J. Li, C. Wang, H. Zhu, Y. Mao, H.-S. Fang, and C. Lu, “CrowdPose: Efficient crowded scenes pose estimation and a new benchmark,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 10855–10864.
|
[52] |
X. Jiang, H. Tao, J.-N. Hwang, and Z. J. Fang, “A multiscale coarse-to-fine human pose estimation network with hard keypoint mining,” IEEE Trans. Syst. Man Cybern. Syst., vol. 54, no. 3, pp. 1730–1741, Mar. 2024. doi: 10.1109/TSMC.2023.3328876
|