Citation: | X. Chen, Z. Su, L. Jin, and S. Li, “A correntropy-based echo state network with application to time series prediction,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–11, Feb. 2025. doi: 10.1109/JAS.2024.124932 |
[1] |
J. Liu, S. Li, and R. Liu, “Recurrent neural network inspired finite-time control design,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1527–1529, Jun. 2024. doi: 10.1109/JAS.2023.123297
|
[2] |
L. Jin, Z. Su, D. Fu, and X. Xiao, “Coevolutionary neural solution for nonconvex optimization with noise tolerance,” IEEE Trans. Neural Netw. Learn. Syst., DOI 10.1109/TNNLS.2023.3306374.
|
[3] |
L. Hua, K. Shi, Z.-G. Wu, S. Han, and S. Zhong, “Sliding mode control for recurrent neural networks with time-varying delays and impulsive effects,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1319–1321, May 2023. doi: 10.1109/JAS.2023.123372
|
[4] |
L. Jin, L. Wei, and S. Li, “Gradient-based differential neural-solution to time-dependent nonlinear optimization,” IEEE Trans. Automat. Contr., vol. 68, no. 1, pp. 620–627, Jan. 2023. doi: 10.1109/TAC.2022.3144135
|
[5] |
Z. Zeng, J. Wang, and X. Liao, “Global exponential stability of a general class of recurrent neural networks with time-varying delays,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 50, no. 10, pp. 1353–1358, Oct. 2003. doi: 10.1109/TCSI.2003.817760
|
[6] |
A. Joshi, S. Capezza, A. Alhaji, and M.-Y. Chow, “Survey on AI and machine learning techniques for microgrid energy management systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1513–1529, Jul. 2023. doi: 10.1109/JAS.2023.123657
|
[7] |
M. Liu, L. Chen, X. Du, L. Jin, and M. Shang, “Activated gradients for deep neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4, pp. 2156–2168, Apr. 2023. doi: 10.1109/TNNLS.2021.3106044
|
[8] |
H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural networks-with an erratum note,” Bonn, Germany, German Nat. Res. Center Inf. Technol. GMD Tech. Rep., vol. 148, no. 34, p. 13, 2001.
|
[9] |
H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication,” Science, vol. 304, no. 5667, pp. 78–80, Apr. 2004. doi: 10.1126/science.1091277
|
[10] |
S. Jere, R. Safavinejad, and L. Liu, “Theoretical foundation and design guideline for reservoir computing-based MIMO-OFDM symbol detection,” IEEE Trans. Commun., vol. 71, no. 9, pp. 5169–5181, Sep. 2023. doi: 10.1109/TCOMM.2023.3263874
|
[11] |
F. De Vita, G. Nocera, D. Bruneo, and S. K. Das, “A novel echo state network autoencoder for anomaly detection in industrial IoT systems,” IEEE Trans. Ind. Inform., vol. 19, no. 8, pp. 8985–8994, Aug. 2023. doi: 10.1109/TII.2022.3224981
|
[12] |
J. Yang, Z. Huang, S. Quan, Z. Cao, and Y. Zhang, “RANSACs for 3D rigid registration: A comparative evaluation,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1861–1878, Oct. 2022. doi: 10.1109/JAS.2022.105500
|
[13] |
D. Su, P. S. Stanimirović, L. B. Han, and L. Jin, “Neural dynamics for improving optimiser in deep learning with noise considered,” CAAI Trans. Intell. Technol., vol. 9, no. 3, pp. 722–737, 2024. doi: 10.1049/cit2.12263
|
[14] |
L. Shen, J. Chen, Z. Zeng, J. Yang, and J. Jin, “A novel echo state network for multivariate and nonlinear time series prediction,” Appl. Soft Comput., vol. 62, pp. 524–535, Jan. 2018. doi: 10.1016/j.asoc.2017.10.038
|
[15] |
D. Li, M. Han, and J. Wang, “Chaotic time series prediction based on a novel robust echo state network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 787–799, May 2012. doi: 10.1109/TNNLS.2012.2188414
|
[16] |
M. Xu and M. Han, “Adaptive elastic echo state network for multivariate time series prediction,” IEEE Trans. Cybern., vol. 46, no. 10, pp. 2173–2183, Oct. 2016. doi: 10.1109/TCYB.2015.2467167
|
[17] |
X. Dutoit, B. Schrauwen, J. Van Campenhout, D. Stroobandt, H. Van Brussel, and M. Nuttin, “Pruning and regularization in reservoir computing,” Neurocomputing, vol. 72, no. 7–9, pp. 1534–1546, Mar. 2009.
|
[18] |
F. Li and Y. Li, “Robust echo state network with Cauchy loss function and hybrid regularization for noisy time series prediction,” Appl. Soft Comput., vol. 146, p. 110640, Oct. 2023. doi: 10.1016/j.asoc.2023.110640
|
[19] |
C. Peng and J. Ma, “Domain adaptive semantic segmentation via entropy-ranking and uncertain learning-based self-training,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1524–1527, Aug. 2022. doi: 10.1109/JAS.2022.105767
|
[20] |
R. Izanloo, S. A. Fakoorian, H. S. Yazdi, and D. Simon, “Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise,” in Proc. Annu. Conf. Inf. Syst. Sci., Princeton, NJ, USA, 2016, pp. 500–505.
|
[21] |
B. Shen, X. Wang, and L. Zou, “Maximum correntropy Kalman filtering for non-Gaussian systems with state saturations and stochastic nonlinearities,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1223–1233, May 2023. doi: 10.1109/JAS.2023.123195
|
[22] |
C. L. P. Chen, and Z. Liu, “Broad learning system: An effective and efficient incremental learning system without the need for deep architecture,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24, Jan. , 2018. doi: 10.1109/TNNLS.2017.2716952
|
[23] |
G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006.
|
[24] |
S. Li, Z. You, H. Guo, X. Luo, and Z.-Q. Zhao, “Inverse-free extreme learning machine with optimal information updating,” IEEE Trans. Cybern., vol. 46, no. 5, pp. 1229–1241, May 2016. doi: 10.1109/TCYB.2015.2434841
|
[25] |
Y. Zheng, B. Chen, S. Wang, and W. Wang, “Broad learning system based on maximum correntropy criterion,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 3083–3097, Jul. 2021. doi: 10.1109/TNNLS.2020.3009417
|
[26] |
J. Cao, H. Dai, B. Lei, C. Yin, H. Zeng, and A. Kummert, “Maximum correntropy criterion-based hierarchical one-class classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3748–3754, Aug. 2021. doi: 10.1109/TNNLS.2020.3015356
|
[27] |
Y. Guo, F. Wang, B. Chen, and J. Xin, “Robust echo state networks based on correntropy induced loss function,” Neurocomputing, vol. 267, pp. 295–303, Dec. 2017. doi: 10.1016/j.neucom.2017.05.087
|
[28] |
C. Zhang, Y. Guo, F. Wang, and B. Chen, “Generalized maximum correntropy-based echo state network for robust nonlinear system identification,” in Proc. Int. Jt. Conf. Neural Networks, Rio de Janeiro, Brazil, 2018, pp. 1–6.
|
[29] |
W. He, M. Liu, Y. Tang, Q. Liu, and Y. Wang, “Differentiable automatic data augmentation by proximal update for medical image segmentation,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1315–1318, Jul. 2022. doi: 10.1109/JAS.2022.105701
|
[30] |
X. Li, Y. Xu, N. Li, B. Yang, and Y. Lei, “Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 121–134, Jan. 2023. doi: 10.1109/JAS.2022.105935
|
[31] |
M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 780–784, May 2002. doi: 10.1109/TNN.2002.1000150
|
[32] |
Z. Zeng, J. Wang, and X. Liao, “Stability analysis of delayed cellular neural networks described using cloning templates,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 51, no. 11, pp. 2313–2324, Nov. 2004. doi: 10.1109/TCSI.2004.836855
|
[33] |
L. Jin, S. Liang, X. Luo, and M. Zhou, “Distributed and time-delayed k-winner-take-all network for competitive coordination of multiple robots,” IEEE Trans. Cybern., vol. 53, no. 1, pp. 641–652, Jan. , 2023. doi: 10.1109/TCYB.2022.3159367
|
[34] |
M. Wang, Y. Xie, and S. Qin, “An adaptive memristor-programming neurodynamic approach to nonsmooth nonconvex optimization problems,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 11, pp. 6874–6885, Nov. 2023. doi: 10.1109/TSMC.2023.3287237
|
[35] |
R. P. Agarwal, M. Meehan, and D. O’ Regan, Fixed Point Theory and Applications. Cambridge, U.K.: Cambridge Univ. Press, 2001.
|
[36] |
X.-T. Yuan and B.-G. Hu, “Robust feature extraction via information theoretic learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn., Montreal, QC, Canada, 2009, pp. 1193–1200.
|
[37] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.: Cambridge Univ. Press, 2004.
|
[38] |
X. Chen, M. Liu, and S. Li, “Echo state network with probabilistic regularization for time series prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 8, pp. 1743–1753, Aug. 2023. doi: 10.1109/JAS.2023.123489
|
[39] |
S. Park, K. M. Cohen, and O. Simeone, “Few-shot calibration of set predictors via meta-learned cross-validation-based conformal prediction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 1, pp. 280–291, Jan. 2024. doi: 10.1109/TPAMI.2023.3327300
|
[40] |
M. Khalid and A. V. Savkin, “A method for short-term wind power prediction with multiple observation points,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 579–586, May 2012. doi: 10.1109/TPWRS.2011.2160295
|
[41] |
Z. Shi and M. Han, “Support vector echo-state machine for chaotic time-series prediction,” IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 359–372, Mar. 2007. doi: 10.1109/TNN.2006.885113
|
[42] |
M. Xu, M. Han, C. L. P. Chen, and T. Qiu, “Recurrent broad learning systems for time series prediction,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1405–1417, Apr. 2020. doi: 10.1109/TCYB.2018.2863020
|
[43] |
M. Milanese and C. Novara, “Set membership prediction of nonlinear time series,” IEEE Trans. Automat. Contr., vol. 50, no. 11, pp. 1655–1669, Nov. 2005. doi: 10.1109/TAC.2005.858693
|