A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. Yang, C. Wang, H. Hou, M. Wang, and X. Li, “Feature-driven variational mesh denoising,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124923
Citation: J. Yang, C. Wang, H. Hou, M. Wang, and X. Li, “Feature-driven variational mesh denoising,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124923

Feature-Driven Variational Mesh Denoising

doi: 10.1109/JAS.2024.124923
Funds:  This work was supported in part by the National Natural Science Foundation of China (62476219, 62206220, 12271140, 12326609), the Young Talent Fund of Association for Science and Technology in Shaanxi, China (20230140), the Chunhui Program of Ministry of Education of China (HZKY20220537), and the Fundamental Funds for the Central Universities (G2023KY0601)
More Information
  • This work elaborates an innovative mesh denoising approach that combines feature recovery and denoising in an alternating manner. It proposes a feature-driven variational model and introduces an iterative scheme that alternates between feature recovery and the denoising process. The main idea is to estimate feature candidates, filter noisy face normals in the smooth (non-feature) domain, and utilize erosion and dilation operators on the feature candidates. By imposing connectivity constraints on normal vectors with large amplitude variations, the proposed scheme effectively removes noise and progressively recovers both sharp and small-scale features during the iterative process. To validate its effectiveness, this work conducts extensive numerical experiments on both simulated and real-scanned data. The results demonstrate significant improvements in noise reduction and feature preservation compared to existing methods.

     

  • loading
  • [1]
    Z. Liu, Y. Li, W. Wang, L. Liu, and R. Chen, “Mesh total generalized variation for denoising,” IEEE Trans. Vis. Comput. Graphics, vol. 28, no. 12, pp. 4418–4433, Dec. 2022. doi: 10.1109/TVCG.2021.3088118
    [2]
    P. Wang, Z. Wang, S. Xin, X. Gao, W. Wang, and C. Tu, “Restricted delaunay triangulation for explicit surface reconstruction,” ACM Trans. Graph., vol. 41, no. 5, pp. 180:1–180:20, Oct. 2022.
    [3]
    B. Huang, T. Zhang, and Y. Wang, “Pose2UV: Single-shot multiperson mesh recovery with deep UV prior,” IEEE Trans. Image Process., vol. 31, pp. 4679–4692, 2022. doi: 10.1109/TIP.2022.3187294
    [4]
    J. Zhang, Y. Yao, and L. Quan, “Learning signed distance field for multi-view surface reconstruction,” in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 6525–6534.
    [5]
    W. Zhang, B. Deng, J. Zhang, S. Bouaziz, and L. Liu, “Guided mesh normal filtering,” Comput. Graph. Forum, vol. 34, no. 7, pp. 23–34, Oct. 2015. doi: 10.1111/cgf.12742
    [6]
    L. Zhou and C. D. Hansen, “A survey of colormaps in visualization,” IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 8, pp. 2051–2069, Aug. 2016. doi: 10.1109/TVCG.2015.2489649
    [7]
    L. G. Liu, C. L. Tai, Z. P. Ji, and G. J. Wang, “Non-iterative approach for global mesh optimization,” Comput.-Aided Des., vol. 39, no. 9, pp. 772–782, Sept. 2007. doi: 10.1016/j.cad.2007.03.004
    [8]
    J. Yang and C. Wang, “A wavelet frame approach for removal of mixed Gaussian and impulse noise on surfaces,” Inverse Probl. Imag., vol. 11, no. 5, pp. 783–798, Oct. 2017. doi: 10.3934/ipi.2017037
    [9]
    D. A. Field, “Laplacian smoothing and Delaunay triangulations,” Commun. Appl. Numer. Methods, vol. 4, no. 6, pp. 709–712, Nov./Dec. 1988. doi: 10.1002/cnm.1630040603
    [10]
    G. Taubin, “A signal processing approach to fair surface design,” in Proc. Annu. Conf. Comput. Graph. Interactive Techn., Jul. 1995, pp. 351–358.
    [11]
    M. Desbrun, M. Meyer, P. Schroder, and A.M. Barr, “Implicit fairing of irregular meshes using diffusion and curvature flow,” in Proc. Annu. Conf. Comput. Graph. Interactive Techn., Jul. 1999, pp. 709–712.
    [12]
    S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,” ACM Trans. Graph., vol. 22, no. 3, pp. 950–953, Jul. 2003. doi: 10.1145/882262.882368
    [13]
    Y. Zheng, H. Fu, O. K.-C. Au, and C.-L. Tai, “Bilateral normal filtering for mesh denoising,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 10, pp. 1521–1530, Oct. 2013.
    [14]
    X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, “Fast and effective feature-preserving mesh denoising,” IEEE Trans. Vis. Comput. Graphics, vol. 13, no. 5, pp. 925–938, Sept.–Oct. 2007. doi: 10.1109/TVCG.2007.1065
    [15]
    H. Zhang, C. Wu, J. Zhang, and J. Deng, “Variational mesh denoising using total variation and piecewise constant function space,” IEEE Trans. Vis. Comput. Graphics, vol. 21, no. 7, pp. 873–886, Jul. 2015. doi: 10.1109/TVCG.2015.2398432
    [16]
    Z. Liu, R. J. Lai, H. Y. Zhang, and C. L. Wu, “Triangulated surface denoising using high order regularization with dynamic weights,” SIAM J. Sci. Comput., vol. 41, no. 1, pp. 1–26, 2019.
    [17]
    D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi, “Efficiently combing positions and normals for precise 3D geometry,” ACM Trans. Graph., vol. 24, no. 3, pp. 536–543, Jul. 2005. doi: 10.1145/1073204.1073226
    [18]
    J. Diebel, S. Thrun, and M. Brunig, “A Bayesian method for probable surface reconstruction and decimation,” ACM Trans. Graph., vol. 25, no. 1, pp. 39–59, Jan. 2006. doi: 10.1145/1122501.1122504
    [19]
    H. Fan, Y. Yu, and Q. Peng, “Robust feature-preserving mesh denoisng based on consistent subneighborhoods,” IEEE Trans. Vis. Comput. Graphics, vol. 16, no. 2, pp. 312–324, Mar.–Apr. 2010. doi: 10.1109/TVCG.2009.70
    [20]
    R. Wang, Z. Yang, L. Liu, J. Deng, and F. Chen, “Decoupling noises and features via weighted $\ell_1$-analysis compressed sensing,” ACM Trans. Graph., vol. 33, no. 2, pp. 18:1–18:12, Mar. 2014.
    [21]
    H. S. Kim, H. K. Choi, and K. H. Lee, “Feature detection of triangular meshes based on tensor voting theory,” Comput.-Aided Des., vol. 41, no. 1, pp. 47–58, Jan. 2009. doi: 10.1016/j.cad.2008.12.003
    [22]
    X. Lu, Z. Deng, and W. Chen, “A robust scheme for feature-preserving mesh denoising,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 3, pp. 1181–1194, 1 Mar. 2016.
    [23]
    M. Wei, L. Liang, W. M. Pang, J. Wang, W. Li, and H. Wu, “Tensor voting guided mesh denoising,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 931–945, Apr. 2017. doi: 10.1109/TASE.2016.2553449
    [24]
    M. Wei, J. Huang, X. Xie, L. Liu, and J. Qin, “Mesh denoising guided by patch normal co-filtering via kernel low-rank recovery,” IEEE Trans. Visual Comput. Graphics, vol. 25, no. 10, pp. 2910–2926, Oct. 2019. doi: 10.1109/TVCG.2018.2865363
    [25]
    C. Wang, Z. Liu, and L. Liu, “Feature-preserving Mumford–Shah mesh processing via nonsmooth nonconvex regularization,” Comput. Graph., vol. 106, pp. 222–236, Aug. 2022. doi: 10.1016/j.cag.2022.06.006
    [26]
    S. Nousias, G. Arvanitis, A. S. Lalos, and K. Moustakas, “Fast mesh denoising with data driven normal filtering using deep variational autoencoders,” IEEE Trans. Industr. Inform., vol. 17, no. 2, pp. 980–990, Feb. 2021. doi: 10.1109/TII.2020.3000491
    [27]
    W. Zhao, X. Liu, Y. Zhao, X. Fan, and D. Zhao, “NormalNet: Learning-based mesh normal denoising via local partition normalization,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 12, pp. 4697–4710, Dec. 2021. doi: 10.1109/TCSVT.2021.3099939
    [28]
    X. Li, R. Li, L. Zhu, C. W. Fu, and P. A. Heng, “DNF-Net: A deep normal filtering network for mesh denoising,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 10, pp. 4060–4072, Oct. 2021. doi: 10.1109/TVCG.2020.3001681
    [29]
    H. Zhang, Z. He, and X. Wang, “A novel mesh denoising method based on relaxed second-order total generalized variation,” SIAM J. Imaging Sci., vol. 15, no. 1, pp. 1–22, Jan. 2022. doi: 10.1137/21M1397945
    [30]
    Y. Xing, J. Tan, P. Hong, Y. He, and M. Hu, “Mesh denoising based on recurrent neural networks,” Symmetry, vol. 14, no. 6, p. 1233, Jun. 2022. doi: 10.3390/sym14061233
    [31]
    M. Armando, J. Franco, and E. Boyer, “Mesh denoising with facet graph convolutions,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 8, pp. 2999–3012, Aug. 2022. doi: 10.1109/TVCG.2020.3045490
    [32]
    Y. Zhang, G. Shen, Q. Wang, Y. Qian, M. Wei, and J. Qin, “GeoBi-GNN: Geometry-aware bi-domain mesh denoising via graph neural networks,” Comput.-Aided Des., vol. 144, p. 103154, Mar. 2022. doi: 10.1016/j.cad.2021.103154
    [33]
    Y. Shen, H. Fu, Z. Du, X. Chen, E. Burnaev, D. Zorin, K. Zhou, and Y. Zheng, “GCN-denoiser: Mesh denoising with graph convolutional networks,” ACM Trans. Graph., vol. 41, no. 1, pp. 1–14, Feb. 2022.
    [34]
    S. Hattori, T. Yatagawa, Y. Ohtake, and H. Suzuki, “Learning self-prior for mesh denoising using dual graph convolutional networks,” in Proc. Euro. Conf. Comput. Vis., Nov. 2022, pp. 363–379.
    [35]
    C. Wang, Z. Yan, W. Pedrycz, M. Zhou, and Z. Li, “A weighted fidelity and regularization-based method for mixed or unknown noise removal from images on graphs,” IEEE Trans. Image Process., vol. 29, no. 1, pp. 5229–5243, Dec. 2020.
    [36]
    C. Wang, W. Pedrycz, J. Yang, M. Zhou, and Z. Li, “Wavelet frame-based fuzzy C-means clustering for segmenting images on graphs,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3938–3949, Sept. 2020. doi: 10.1109/TCYB.2019.2921779
    [37]
    C. Wang, W. Pedrycz, Z. Li, M. Zhou, and S. S. Ge, “G-image segmentation: Similarity-preserving fuzzy C-means with spatial information constraint in wavelet space,” IEEE Trans. Fuzzy Syst., vol. 29, no. 12, pp. 3887–3898, Dec. 2021. doi: 10.1109/TFUZZ.2020.3029285
    [38]
    Y. Zhao, H. Qin, X. Zeng, J. Xu, and J. Dong, “Robust and effective mesh denoising using L0 sparse regularization,” Comput.-Aided Des., vol. 101, pp. 82–97, Aug. 2018. doi: 10.1016/j.cad.2018.04.001
    [39]
    H. Zhang, Z. He, and X. Wang, “A novel mesh denoising method based on relaxed second-order total generalized variation,” SIAM J. Imaging Sci., vol. 15, no. 1, pp. 1–22, 2022. doi: 10.1137/21M1397945
    [40]
    L. He and S. Schaefer, “Mesh denoising via L0 minimization,” ACM Trans. Graph., vol. 32, no. 4, pp. 64:1–64:8, Jul. 2013.
    [41]
    J. Cai, B. Dong, and Z. Shen, “Image restorations: A wavelet frame based model for piecewise smooth functions and beyond,” Appl. Comput. Harmon. Anal., vol. 41, no. 1, pp. 94–138, Jul. 2016. doi: 10.1016/j.acha.2015.06.009
    [42]
    B. Dong, Q. Jiang, C. Liu, and Z. Shen, “Multiscale representation of surfaces by tight wavelet frames with applications to denoising,” Appl. Comput. Harmon. Anal., vol. 41, no. 2, pp. 561–589, Sept. 2016. doi: 10.1016/j.acha.2015.03.005
    [43]
    H. Ji, Y. Luo, and Z. Shen, “Image recovery via geometrically structured approximation,” Appl. Comput. Harmon. Anal., vol. 41, no. 1, pp. 75–93, Jul. 2016. doi: 10.1016/j.acha.2015.08.012
    [44]
    P. Wang, Y. Liu, and X. Tong, “Mesh denoising via cascaded normal regression,” ACM Trans. Graph., vol. 35, no. 6, pp. 232:1–232:12, Dec. 2016.
    [45]
    X. Luo, Y. Yuan, S. Chen, N. Zeng, and Z. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324
    [46]
    Y. Yuan, R. Wang, G. Yuan, and L. Xin, “An adaptive divergence-based non-negative latent factor model,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 10, pp. 6475–6487, Oct. 2023. doi: 10.1109/TSMC.2023.3282950
    [47]
    Y. Yuan, J. Li, and X. Luo, “A fuzzy PID-incorporated stochastic gradient descent algorithm for fast and accurate latent factor analysis,” IEEE Trans. Fuzzy Syst., vol. 32, no. 7, pp. 4049–4061, Jul. 2024. doi: 10.1109/TFUZZ.2024.3389733

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(7)

    Article Metrics

    Article views (11) PDF downloads(2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return