A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
P. Song, J. Wang, C. Zhao, and B. Huang, “From static and dynamic perspectives: A survey on historical data benchmarks of control performance monitoring,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124902
Citation: P. Song, J. Wang, C. Zhao, and B. Huang, “From static and dynamic perspectives: A survey on historical data benchmarks of control performance monitoring,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124902

From Static and Dynamic Perspectives: A Survey on Historical Data Benchmarks of Control Performance Monitoring

doi: 10.1109/JAS.2024.124902
Funds:  This work was supported in part by the National Natural Science Foundation of China (62125306), Zhejiang Key Research and Development Project (2024C01163), and the State Key Laboratory of Industrial Control Technology, China (ICT2024A06)
More Information
  • In recent decades, control performance monitoring (CPM) has experienced remarkable progress in research and industrial applications. While CPM research has been investigated using various benchmarks, the historical data benchmark (HIS) has garnered the most attention due to its practicality and effectiveness. However, existing CPM reviews usually focus on the theoretical benchmark, and there is a lack of an in-depth review that thoroughly explores HIS-based methods. In this article, a comprehensive overview of HIS-based CPM is provided. First, we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo: static and dynamic properties. The static property portrays time-independent variability in system output, and the dynamic property describes temporal behavior driven by closed-loop feedback. Accordingly, existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives. Specifically, two mainstream solutions for CPM methods are summarized, including static analysis and dynamic analysis, which match data-driven techniques with actual controlling behavior. Furthermore, this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.

     

  • loading
  • [1]
    S. J. Qin, “Control performance monitoring—A review and assessment,” Comput. Chem. Eng., vol. 23, no. 2, pp. 173–186, Dec. , 1998. doi: 10.1016/S0098-1354(98)00259-2
    [2]
    T. Wang, Q. Chen, X. Lang, L. Xie, P. Li, and H. Su, “Detection of oscillations in process control loops from visual image space using deep convolutional networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 982–995, Apr. 2024. doi: 10.1109/JAS.2023.124170
    [3]
    L. Desborough and R. Miller, “Increasing customer value of industrial control performance monitoring-Honeywell’s experience,” in Proc. 6th Int. Conf. Chemical Process Control, AIChE Symp., Series 326, New York, USA, 2002, pp. 169–189.
    [4]
    S. J. Qin and J. Yu, “Recent developments in multivariable controller performance monitoring,” J. Process Control, vol. 17, no. 3, pp. 221–227, Mar. 2007. doi: 10.1016/j.jprocont.2006.11.002
    [5]
    Y. J. Shin and P. H. Meckl, “Application of combined feedforward and feedback controller with shaped input to benchmark problem,” J. Dyn. Sys., Meas., Control., vol. 132, no. 2, p. 021001, Mar. 2010. doi: 10.1115/1.4000651
    [6]
    M. Jelali, “An overview of control performance assessment technology and industrial applications,” Control Eng. Pract., vol. 14, no. 5, pp. 441–466, May 2006. doi: 10.1016/j.conengprac.2005.11.005
    [7]
    N. D. Pour, B. Huang, and S. L. Shah, “Performance assessment of advanced supervisory–regulatory control systems with subspace LQG benchmark,” Automatica, vol. 46, no. 8, pp. 1363–1368, Aug. 2010. doi: 10.1016/j.automatica.2010.05.016
    [8]
    C. Dai and S. H. Yang, “Controller performance assessment with a LQG benchmark obtained by using the subspace method,” in Proc. Control, 2004.
    [9]
    C. Zhao, Y. Zhao, H. Su, and B. Huang, “Economic performance assessment of advanced process control with LQG benchmarking,” J. Process Control, vol. 19, no. 4, pp. 557–569, Apr. 2009. doi: 10.1016/j.jprocont.2008.09.007
    [10]
    T. J. Harris, “Assessment of control loop performance,” Can. J. Chem. Eng., vol. 67, no. 5, pp. 856–861, Oct. 1989. doi: 10.1002/cjce.5450670519
    [11]
    K. J. Åström, Introduction to Stochastic Control Theory. New York, USA: Academic Press, 1970.
    [12]
    L. Desborough and T. Harris, “Performance assessment measures for univariate feedforward/feedback control,” Can. J. Chem. Eng., vol. 71, no. 4, pp. 605–616, Aug. 1993. doi: 10.1002/cjce.5450710413
    [13]
    T. J. Harris and C. T. Seppala, “Recent developments in controller performance monitoring and assessment techniques,” in Proc. AIChE Symp. Series, New York, USA, 2002, pp. 208–222.
    [14]
    M. L. Tyler and M. Morari, “Performance monitoring of control systems using likelihood methods,” Automatica, vol. 32, no. 8, pp. 1145–1162, Aug. 1996. doi: 10.1016/0005-1098(96)00058-1
    [15]
    C. B. Lynch and G. A. Dumont, “Control loop performance monitoring,” IEEE Trans. Control Syst. Technol., vol. 4, no. 2, pp. 185–192, Marc. 1996. doi: 10.1109/87.486345
    [16]
    B. Huang, “Minimum variance control and performance assessment of time-variant processes,” J. Process Control, vol. 12, no. 6, pp. 707–719, Sep. 2002. doi: 10.1016/S0959-1524(01)00026-9
    [17]
    W. Yu, D. I. Wilson, and B. R. Young, “Control performance assessment for nonlinear systems,” J. Process Control, vol. 20, no. 10, pp. 1235–1242, Dec. 2010. doi: 10.1016/j.jprocont.2010.09.002
    [18]
    Q. Lu, M. G. Forbes, R. B. Gopaluni, P. D. Loewen, J. U. Backström, and G. A. Dumont, “Performance assessment of cross-directional control for paper machines,” IEEE Trans. Control Syst. Technol., vol. 25, no. 1, pp. 208–221, Jan. 2017. doi: 10.1109/TCST.2016.2553134
    [19]
    T. J. Harris, F. Boudreau, and J. F. Macgregor, “Performance assessment of multivariable feedback controllers,” Automatica, vol. 32, no. 11, pp. 1505–1518, Nov. 1996. doi: 10.1016/S0005-1098(96)00108-2
    [20]
    R. Kadali and B. Huang, “Multivariate controller performance assessment without interactor matrix—A subspace approach,” IFAC Proc. Vol., vol. 37, no. 1, pp. 535–540, May , 2004.
    [21]
    B.-S. Ko and T. F. Edgar, “Performance assessment of multivariable feedback control systems,” Automatica, vol. 37, no. 6, pp. 899–905, Jun. 2001. doi: 10.1016/S0005-1098(01)00032-2
    [22]
    B. Huang and S. L. Shah, Performance Assessment of Control Loops: Theory and Applications. London, UK: Springer Verlag, 1999.
    [23]
    J. Gao, R. Patwardhan, K. Akamatsu, Y. Hashimoto, G. Emoto, S. L. Shah, and B. Huang, “Performance evaluation of two industrial MPC controllers,” Control Eng. Pract., vol. 11, no. 12, pp. 1371–1387, Dec. 2003. doi: 10.1016/S0967-0661(03)00115-1
    [24]
    R. Patwardhan, “Performance analysis of model-based predictive controllers: An industrial case study,” in Proc. Annu. Meeting of AIChE, Miami Beach, USA, 1998.
    [25]
    F. Harrou, Y. Sun, A. S. Hering, and M. Madakyaru, Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches: Theory and Practical Applications. Amsterdam, Netherlands: Elsevier, 2020.
    [26]
    B. Huang, S. L. Shah, and E. K. Kwok, “Good, bad or optimal? Performance assessment of multivariable processes,” Automatica, vol. 33, no. 6, pp. 1175–1183, Jun. 1997. doi: 10.1016/S0005-1098(97)00017-4
    [27]
    C. Li, B. Huang, D. Zheng, and F. Qian, “Multi-input–multi-output (MIMO) control system performance monitoring based on dissimilarity analysis,” Ind. Eng. Chem. Res., vol. 53, no. 47, pp. 18226–18235, Nov. 2014. doi: 10.1021/ie503641c
    [28]
    C. Shang, B. Huang, F. Yang, and D. Huang, “Slow feature analysis for monitoring and diagnosis of control performance,” J. Process Control, vol. 39, pp. 21–34, Mar. 2016. doi: 10.1016/j.jprocont.2015.12.004
    [29]
    P. Song and C. Zhao, “Slow down to go better: A survey on slow feature analysis,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 3416–3436, Mar. 2024. doi: 10.1109/TNNLS.2022.3201621
    [30]
    B. Srinivasan, T. Spinner, and R. Rengaswamy, “Control loop performance assessment using detrended fluctuation analysis (DFA),” Automatica, vol. 48, no. 7, pp. 1359–1363, Jul. 2012. doi: 10.1016/j.automatica.2012.04.003
    [31]
    S. X. Ding and L. Li, “Control performance monitoring and degradation recovery in automatic control systems: A review, some new results, and future perspectives,” Control Eng. Pract., vol. 111, p. 104790, Jun. 2021. doi: 10.1016/j.conengprac.2021.104790
    [32]
    J. Yu and S. J. Qin, “Statistical MIMO controller performance monitoring. Part I: Data-driven covariance benchmark,” J. Process Control, vol. 18, no. 3-4, pp. 277–296, Mar. 2008. doi: 10.1016/j.jprocont.2007.06.002
    [33]
    B. Huang, S. X. Ding, and N. Thornhill, “Alternative solutions to multi-variate control performance assessment problems,” J. Process Control, vol. 16, no. 5, pp. 457–471, Jun. 2006. doi: 10.1016/j.jprocont.2005.09.003
    [34]
    S. Zhang, C. Zhao, and B. Huang, “Simultaneous static and dynamic analysis for fine-scale identification of process operation statuses,” IEEE Trans. Ind. Informat., vol. 15, no. 9, pp. 5320–5329, Sep. 2019. doi: 10.1109/TII.2019.2896987
    [35]
    L. Desborough and T. Harris, “Performance assessment measures for univariate feedback control,” Can. J. Chem. Eng., vol. 70, no. 6, pp. 1186–1197, Dec. 1992. doi: 10.1002/cjce.5450700620
    [36]
    S. Alcántara, R. Vilanova, and C. Pedret, “PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning,” J. Process Control, vol. 23, no. 4, pp. 527–542, Apr. 2013. doi: 10.1016/j.jprocont.2013.01.003
    [37]
    K. J. Åström and B. Wittenmark, Adaptive Control. 2nd ed. Mineola, USA: Dover Publications, 2008.
    [38]
    X. Chen, J. Zheng, C. Zhao, and M. Wu, “Full decoupling high-order dynamic mode decomposition for advanced static and dynamic synergetic fault detection and isolation,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 1, pp. 226–240, Jan. 2024. doi: 10.1109/TASE.2022.3218009
    [39]
    B. Huang, S. L. Shah, and R. Miller, “Feedforward plus feedback controller performance assessment of MIMO systems,” IEEE Trans. Control Syst. Technol., vol. 8, no. 3, pp. 580–587, May 2000.
    [40]
    C.-Q. Huang, C.-B. Zheng, F. Yang, and C.-Y. Su, “Performance assessment of multivariate process using time delay matrix,” J. Process Control, vol. 98, pp. 10–17, Feb. 2021. doi: 10.1016/j.jprocont.2020.10.002
    [41]
    C.-Q. Huang, Z.-H. Wu, and J.-H. Huang, “Model-independent approach for minimum variance performance assessment of a multivariate process,” Ind. Eng. Chem. Res., vol. 61, no. 5, pp. 2136–2151, Jan. 2022. doi: 10.1021/acs.iecr.1c03218
    [42]
    T. J. Rato and M. S. Reis, “A new data driven index for control performance monitoring,” Comput. Aided Chem. Eng., vol. 30, pp. 852–856, Dec. 2012.
    [43]
    Y. Wang, S. Li, J. Tian, and Z. Zhao, “Performance assessment of thermal power plant load control system based on covariance index,” Control Eng. Pract., vol. 54, pp. 58–69, Sep. 2016. doi: 10.1016/j.conengprac.2016.04.015
    [44]
    D. Zumoffen, L. Braccia, and P. Luppi, “Data-driven plant-wide control performance monitoring,” Ind. Eng. Chem. Res., vol. 58, no. 16, pp. 6576–6591, Apr. 2019. doi: 10.1021/acs.iecr.8b06293
    [45]
    X. Tian, G. Chen, and S. Chen, “A data-based approach for multivariate model predictive control performance monitoring,” Neurocomputing, vol. 74, no. 4, pp. 588–597, Jan. 2011. doi: 10.1016/j.neucom.2010.09.018
    [46]
    M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno, “Statistical process monitoring based on dissimilarity of process data,” AIChE J., vol. 48, no. 6, pp. 1231–1240, Jun. 2002. doi: 10.1002/aic.690480610
    [47]
    J. Wang and C. Zhao, “A Gaussian feature analytics-based DISSIM method for fine-grained non-Gaussian process monitoring,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 4, pp. 2175–2181, Oct. 2020. doi: 10.1109/TASE.2020.3013654
    [48]
    J. Chen and J. Yu, “Independent component analysis mixture model based dissimilarity method for performance monitoring of Non-Gaussian dynamic processes with shifting operating conditions,” Ind. Eng. Chem. Res., vol. 53, no. 13, pp. 5055–5066, Jul. 2014. doi: 10.1021/ie401027b
    [49]
    C. Zhao, F. Wang, and Y. Zhang, “Nonlinear process monitoring based on kernel dissimilarity analysis,” Control Eng. Pract., vol. 17, no. 1, pp. 221–230, Jan. 2009. doi: 10.1016/j.conengprac.2008.07.001
    [50]
    K. Wang, J. Chen, and Z. Song, “Using multivariate pattern segmentation to assess process performance and mine good operation conditions for dynamic chemical industry,” Chem. Eng. Sci., vol. 201, pp. 339–348, Jun. 2019. doi: 10.1016/j.ces.2019.01.057
    [51]
    W. Mou, H. Jin, H. Wang, M. Dai, J. Wang, and C. Zhao, “Dissimilarity analytics for monitoring of nonstationary industrial processes with stationary subspace decomposition,” in Proc. Chinese Automation Congr., Shanghai, China, 2020, pp. 651–656.
    [52]
    K. E. S. Pilario and Y. Cao, “Canonical variate dissimilarity analysis for process incipient fault detection,” IEEE Trans. Ind. Inf., vol. 14, no. 12, pp. 5308–5315, Dec. 2018. doi: 10.1109/TII.2018.2810822
    [53]
    P. D. Domański, “Non-Gaussian statistical measures of control performance,” Control Cybern., vol. 46, no. 3, pp. 259–290, Jan. 2017.
    [54]
    P. Wu, “Performance monitoring of MIMO control system using Kullback-Leibler divergence,” Can. J. Chem. Eng., vol. 96, no. 7, pp. 1559–1565, Jul. 2018. doi: 10.1002/cjce.23090
    [55]
    L. Das, R. Rengaswamy, and B. Srinivasan, “Data mining and control loop performance assessment: The multivariate case,” AIChE J., vol. 63, no. 8, pp. 3311–3328, Aug. 2017. doi: 10.1002/aic.15689
    [56]
    C. Li, B. Huang, and F. Qian, “Hellinger distance based probability distribution approach to performance monitoring of nonlinear control systems,” Chin. J. Chem. Eng., vol. 23, no. 12, pp. 1945–1950, Dec. 2015. doi: 10.1016/j.cjche.2015.10.005
    [57]
    Q. Li, J. R. Whiteley, and R. R. Rhinehart, “A relative performance monitor for process controllers,” Int. J. Adapt. Control Signal Process., vol. 17, no. 7–9, pp. 685–708, Sep.–Nov. , 2003. doi: 10.1002/acs.772
    [58]
    J. Chen and W.-Y. Wang, “PCA-ARMA-based control charts for performance monitoring of multivariable feedback control,” Ind. Eng. Chem. Res., vol. 49, no. 5, pp. 2228–2241, Jan. 2010. doi: 10.1021/ie900561x
    [59]
    Z. Yan, C.-L. Chan, and Y. Yao, “Multivariate control performance assessment and control system monitoring via hypothesis test on output covariance matrices,” Ind. Eng. Chem. Res., vol. 54, no. 19, pp. 5261–5272, Apr. 2015. doi: 10.1021/ie502743f
    [60]
    F. Venkataramanan, V. Shukla, R. Saini, and R. R. Rhinehart, “An automated online monitor of control system performance,” in Proc. American Control Conf., Albuquerque, USA, 1997, pp. 1355–1359.
    [61]
    R. R. Rhinehart, “A watchdog for controller performance monitoring,” in Proc. American Control Conf., Seattle, USA, 1995, pp. 2239–2240.
    [62]
    R. A. Ghraizi, E. Martínez, C. de Prada, F. Cifuentes, and J. L. Martínez, “Performance monitoring of industrial controllers based on the predictability of controller behavior,” Comput. Chem. Eng., vol. 31, no. 5-6, pp. 477–486, May 2007. doi: 10.1016/j.compchemeng.2006.06.009
    [63]
    D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Automatica, vol. 50, no. 12, pp. 2967−2986, Dec. 2014.
    [64]
    Y. Zhao, J. Chu, H. Su, and B. Huang, “Multi-step prediction error approach for controller performance monitoring,” Control Eng. Pract., vol. 18, no. 1, pp. 1–12, Jan. 2010. doi: 10.1016/j.conengprac.2009.07.006
    [65]
    Y. Zhao, Y. Gu, H. Su, and B. Huang, “Extended prediction error approach for mpc performance monitoring and industrial applications,” IFAC Proc. Vol., vol. 41, no. 2, pp. 14894–14899, Jan. 2008. doi: 10.3182/20080706-5-KR-1001.02521
    [66]
    B. K. Sarabi, D. K. Maghade, and G. M. Malwatkar, “An empirical data driven based control loop performance assessment of multi-variate systems,” in Proc. Annu. IEEE India Conf., Kochi, India, December 2012, pp. 70–74.
    [67]
    R. Zhang and Q. Zhang, “Model predictive control performance assessment using a prediction error benchmark,” in Proc. Int. Symp. Advanced Control of Industrial Processes, Hangzhou, China, 2011, pp. 571–574.
    [68]
    L. Shang, X. Tian, and L. Cai, “A multi-index control performance assessment method based on historical prediction error covariance,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 13892–13897, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.2207
    [69]
    J. Wang and C. Zhao, “A probabilistic framework with concurrent analytics of Gaussian process regression and classification for multivariate control performance assessment,” J. Process Control, vol. 101, pp. 78–92, May 2021. doi: 10.1016/j.jprocont.2021.03.007
    [70]
    C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, USA: MIT Press, 2006.
    [71]
    C. T. Seppala, T. J. Harris, and D. W. Bacon, “Time series methods for dynamic analysis of multiple controlled variables,” J. Process Control, vol. 12, no. 2, pp. 257–276, Feb. 2002. doi: 10.1016/S0959-1524(01)00038-5
    [72]
    C. Shang, F. Yang, X. Gao, X. Huang, J. A. Suykens, and D. Huang, “Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis,” AIChE J., vol. 61, no. 11, pp. 3666–3682, Nov. 2015. doi: 10.1002/aic.14888
    [73]
    C. Zhao and B. Huang, “A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis,” AIChE J., vol. 64, no. 5, pp. 1662–1681, May 2018. doi: 10.1002/aic.16048
    [74]
    J. Wang and C. Zhao, “Variants of slow feature analysis framework for automatic detection and isolation of multiple oscillations in coupled control loops,” Comput. Chem. Eng., vol. 141, p. 107029, Oct. 2020. doi: 10.1016/j.compchemeng.2020.107029
    [75]
    C. Zhao and B. Huang, “Control performance monitoring with temporal features and dissimilarity analysis for nonstationary dynamic processes,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 357–362, Jan. 2018. doi: 10.1016/j.ifacol.2018.09.326
    [76]
    Y. Hu and C. Zhao, “Fault diagnosis with dual cointegration analysis of common and specific nonstationary fault variations,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 1, pp. 237–247, Jan. 2020. doi: 10.1109/TASE.2019.2917580
    [77]
    L. Shang, Y. Wang, X. Deng, Y. Cao, P. Wang, and Y. Wang, “A model predictive control performance monitoring and grading strategy based on improved slow feature analysis,” IEEE Access, vol. 7, pp. 50897–50911, Apr. 2019. doi: 10.1109/ACCESS.2019.2911369
    [78]
    L. Shang, Y. Wang, X. Deng, Y. Cao, P. Wang, and Y. Wang, “An enhanced method to assess MPC performance based on multi-step slow feature analysis,” Energies, vol. 12, no. 19, p. 3799, Oct. 2019. doi: 10.3390/en12193799
    [79]
    X. Ma, Y. Si, Z. Yuan, Y. Qin, and Y. Wang, “Multistep dynamic slow feature analysis for industrial process monitoring,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, pp. 9535–9548, Dec. 2020. doi: 10.1109/TIM.2020.3004681
    [80]
    X. Gao and Y. A. W. Shardt, “Dynamic system modelling and process monitoring based on long-term dependency slow feature analysis,” J. Process Control, vol. 105, pp. 27–47, Sep. 2021. doi: 10.1016/j.jprocont.2021.07.007
    [81]
    F. Chu, L.-L. Hao, C. Shang, Y. Liu, and F.-L. Wang, “Assessment of process operating performance with supervised probabilistic slow feature analysis,” J. Process Control, vol. 124, pp. 152–165, Apr. 2023. doi: 10.1016/j.jprocont.2023.02.015
    [82]
    Y. Xu, M. Jia, Z. Mao, and H. Li, “A novel kernel dynamic inner slow feature analysis method for dynamic nonlinear process concurrent monitoring of operating point deviations and process dynamics anomalies,” J. Process Control, vol. 110, pp. 59–75, Feb. 2022. doi: 10.1016/j.jprocont.2021.12.005
    [83]
    P. Song, C. Zhao, and B. Huang, “SFNet: A slow feature extraction network for parallel linear and nonlinear dynamic process monitoring,” Neurocomputing, vol. 488, pp. 359–380, Jun. 2022. doi: 10.1016/j.neucom.2022.03.012
    [84]
    W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation by dynamic principal component analysis,” Chemom. Intell. Lab. Syst., vol. 30, no. 1, pp. 179–196, Nov. 1995. doi: 10.1016/0169-7439(95)00076-3
    [85]
    L. Das, B. Srinivasan, and R. Rengaswamy, “Multivariate control loop performance assessment with Hurst exponent and Mahalanobis distance,” IEEE Trans. Control Syst. Technol., vol. 24, no. 3, pp. 1067–1074, May 2016. doi: 10.1109/TCST.2015.2468087
    [86]
    M. Yağcı and J. M. Böling, “Reinforcing Hurst exponent with oscillation detection for control performance analysis: An industrial application,” IFAC-PapersOnLine, vol. 55, no. 6, pp. 772–777, Jan. 2022. doi: 10.1016/j.ifacol.2022.07.220
    [87]
    M. Khosroshahi and J. Poshtan, “Data-driven performance assessment of multivariable control loops using a modified Hurst exponent-based index,” Proc. Inst. Mech. Eng., Part I: J Syst. Control Eng., vol. 235, no. 6, pp. 769–780, Jul. , 2021.
    [88]
    M. Khosroshahi, J. Poshtan, and Y. Alipouri, “Practical control performance assessment method using Hurst exponents and crossover phenomena,” Comput. Chem. Eng., vol. 161, p. 107774, May 2022. doi: 10.1016/j.compchemeng.2022.107774
    [89]
    L. Shang, Y. Zhang, and H. Zhang, “Valve stiction detection method based on dynamic slow feature analysis and Hurst exponent,” Processes, vol. 11, no. 7, p. 1913, Jun. 2023. doi: 10.3390/pr11071913
    [90]
    K. Liu, Y. Q. Chen, and P. D. Domański, “Control performance assessment of the disturbance with fractional order dynamics,” in Nonlinear Dynamics and Control: Proc. the First Int. Nonlinear Dynamics Conf. (NODYCON 2019), Volume Ⅱ, W. Lacarbonara, B. Balachandran, J. Ma, J. A. Tenreiro Machado, G. Stepan, Eds. Cham, Germany: Springer Int. Publishing, 2020, pp. 255–264.
    [91]
    G. Koop, M. H. Pesaran, and S. M. Potter, “Impulse response analysis in nonlinear multivariate models,” J. Econometrics, vol. 74, no. 1, pp. 119–147, Sep. 1996. doi: 10.1016/0304-4076(95)01753-4
    [92]
    J. D. Hamilton, Time Series Analysis. Princeton, USA: Princeton University Press, 2020.
    [93]
    C. W. J. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica, vol. 37, no. 3, pp. 424–438, Aug. 1969. doi: 10.2307/1912791
    [94]
    P. Song, C. Zhao, and B. Huang, “MPGE and RootRank: A sufficient root cause characterization and quantification framework for industrial process faults,” Neural Netw., vol. 161, pp. 397–417, Apr. 2023. doi: 10.1016/j.neunet.2023.01.030
    [95]
    S. Gigi and A. K. Tangirala, “Quantification of interaction in multiloop control systems using directed spectral decomposition,” Automatica, vol. 49, no. 5, pp. 1174–1183, May 2013. doi: 10.1016/j.automatica.2013.01.061
    [96]
    A. Garg and A. K. Tangirala, “Interaction assessment in multivariable control systems through causality analysis,” IFAC Proc. Vol., vol. 47, no. 1, pp. 585–592, Mar. 2014. doi: 10.3182/20140313-3-IN-3024.00217
    [97]
    A. Garg and A. K. Tangirala, “Metrics for interaction assessment in multivariable control systems using directional analysis,” Ind. Eng. Chem. Res., vol. 57, no. 3, pp. 967–979, Jan. 2018. doi: 10.1021/acs.iecr.7b03671
    [98]
    S. J. Kendra and A. Çinar, “Controller performance assessment by frequency domain techniques,” J. Process Control, vol. 7, no. 3, pp. 181–194, Jun. 1997. doi: 10.1016/S0959-1524(96)00027-3
    [99]
    B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D.-K. Cho, and H. Chen, “Deep autoencoding Gaussian mixture model for unsupervised anomaly detection,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2018.
    [100]
    K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y. Wang, “Generative adversarial networks: Introduction and outlook,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 588–598, Sep. 2017. doi: 10.1109/JAS.2017.7510583
    [101]
    J. Chen, B. Cui, Y. Q. Chen, and B. Zhuang, “An improved cooperative team spraying control of a diffusion process with a moving or static pollution source,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 494–504, Mar. 2020. doi: 10.1109/JAS.2019.1911519
    [102]
    A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 6000–6010.
    [103]
    P. Song, C. Zhao, B. Huang, and J. Ding, “Explicit representation and customized fault isolation framework for learning temporal and spatial dependencies in industrial processes,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 2997–3011, Mar. 2024. doi: 10.1109/TNNLS.2023.3262277
    [104]
    Z. Wei, H. Zhao, Z. Li, X. Bu, Y. Chen, X. Zhang, Y. Lv, and F.-Y. Wang, “STGSA: A novel spatial-temporal graph synchronous aggregation model for traffic prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 226–238, Jan. 2023. doi: 10.1109/JAS.2023.123033
    [105]
    R. Chiplunkar and B. Huang, “Siamese neural network-based supervised slow feature extraction for soft sensor application,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8953–8962, Sep. 2021. doi: 10.1109/TIE.2020.3014574
    [106]
    L. Li, X. Han, F. Dong, and S. Zhang, “Zero-shot state identification of industrial gas-liquid two-phase flow via supervised deep slow and steady feature analysis,” IEEE Trans. Ind. Inf., vol. 20, no. 6, pp. 8170–8180, Jun. , 2024. doi: 10.1109/TII.2024.3367045
    [107]
    C. Jiang, Y. Lu, W. Zhong, B. Huang, D. Tan, W. Song, and F. Qian, “Deep Bayesian slow feature extraction with application to industrial inferential modeling,” IEEE Trans. Ind. Inf., vol. 19, no. 1, pp. 40–51, Jan. 2023. doi: 10.1109/TII.2021.3129888
    [108]
    X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, “Self-supervised learning: Generative or contrastive,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 857–876, Jan. 2023.
    [109]
    K. Zhang, Q. Wen, C. Zhang, R. Cai, M. Jin, Y. Liu, J. Y. Zhang, Y. Liang, G. Pang, D. Song, and S. Pan, “Self-supervised learning for time series analysis: Taxonomy, progress, and prospects,” IEEE Trans. Pattern Anal. Mach. Intell., 2024. doi: 10.1109/TPAMI.2024.3387317
    [110]
    T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A brief overview of ChatGPT: The history, status quo and potential future development,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1122–1136, May 2023. doi: 10.1109/JAS.2023.123618
    [111]
    A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting, “Large language models in medicine,” Nat. Med., vol. 29, no. 8, pp. 1930–1940, Jul. 2023. doi: 10.1038/s41591-023-02448-8
    [112]
    M. Jin, Q. Wen, Y. Liang, C. Zhang, S. Xue, X. Wang, J. Zhang, Y. Wang, H. Chen, X. Li, S. Pan, V. S. Tseng, Y. Zheng, L. Chen, and H. Xiong, “Large models for time series and spatio-temporal data: A survey and outlook,” arXiv preprint arXiv: 2310.10196, 2023.
    [113]
    C. Zhao, “Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence,” J. Process Control, vol. 116, pp. 255–272, Aug. 2022. doi: 10.1016/j.jprocont.2022.06.011
    [114]
    M. S. Afzal, W. Tan, and T. Chen, “Process monitoring for multimodal processes with mode-reachability constraints,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 4325–4335, May 2017. doi: 10.1109/TIE.2017.2677351
    [115]
    C. Zhao, J. Chen, and H. Jing, “Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 1563–1574, Oct. 2021. doi: 10.1109/TASE.2020.3010536
    [116]
    X. Peng, Y. Tang, W. Du, and F. Qian, “Multimode process monitoring and fault detection: A sparse modeling and dictionary learning method,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4866–4875, Jun. 2017. doi: 10.1109/TIE.2017.2668987
    [117]
    P. Von Bünau, F. C. Meinecke, F. C. Király, and K. R. Müller, “Finding stationary subspaces in multivariate time series,” Phys. Rev. Lett., vol. 103, no. 21, p. 214101, Nov. 2009. doi: 10.1103/PhysRevLett.103.214101
    [118]
    S. Hara, Y. Kawahara, T. Washio, P. Von Bünau, T. Tokunaga, and K. Yumoto, “Separation of stationary and non-stationary sources with a generalized eigenvalue problem,” Neural Netw., vol. 33, pp. 7–20, Sep. 2012. doi: 10.1016/j.neunet.2012.04.001
    [119]
    J. Chen and C. Zhao, “Exponential stationary subspace analysis for stationary feature analytics and adaptive nonstationary process monitoring,” IEEE Trans. Ind. Inf., vol. 17, no. 12, pp. 8345–8356, Dec. 2021. doi: 10.1109/TII.2021.3053308
    [120]
    W. Yu and C. Zhao, “Recursive exponential slow feature analysis for fine-scale adaptive processes monitoring with comprehensive operation status identification,” IEEE Trans. Ind. Inf., vol. 15, no. 6, pp. 3311–3323, Jun. 2019. doi: 10.1109/TII.2018.2878405
    [121]
    M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3366–3385, Jul. 2022.
    [122]
    J. Zhang, J. Xiao, M. Chen, and X. Hong, “Multimodal continual learning for process monitoring: A novel weighted canonical correlation analysis with attention mechanism,” IEEE Trans. Neural Netw. Learn. Syst., 2023. doi: 10.1109/TNNLS.2023.3331732
    [123]
    J. Wang and C. Zhao, “Robust control performance monitoring for varying-dimensional time-series data based on SCADA systems,” IEEE Trans. Instrum. Meas., vol. 71, p. 2510514, May 2022.
    [124]
    Z. Yao and C. Zhao, “FIGAN: A missing industrial data imputation method customized for soft sensor application,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 3712–3722, Oct. 2022. doi: 10.1109/TASE.2021.3132037
    [125]
    Z. Chai, C. Zhao, and B. Huang, “Variational progressive-transfer network for soft sensing of multirate industrial processes,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 12882–12892, Dec. 2022. doi: 10.1109/TCYB.2021.3090996
    [126]
    J. Zheng, X. Chen, and C. Zhao, “Interval-aware probabilistic slow feature analysis for irregular dynamic process monitoring with missing data,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 10, pp. 6553–6564, Oct. 2023. doi: 10.1109/TSMC.2023.3284397
    [127]
    R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential equations,” in Proc. 32nd Int. Conf. Neural Information Processing Systems, Montréal, Canada, 2018, pp. 6572–6583.
    [128]
    Y. Chen, K. Ren, Y. Wang, Y. Fang, W. Sun, and D. Li, “ContiFormer: Continuous-time transformer for irregular time series modeling,” in Proc. 37th Int. Conf. Neural Information Processing Systems, New Orleans, USA, 2024, pp. 2042.
    [129]
    Z. Yuan, X. Li, D. Wu, X. Ban, N.-Q. Wu, H.-N. Dai, and H. Wang, “Continuous-time prediction of industrial paste thickener system with differential ODE-Net,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 686–698, Apr. 2022. doi: 10.1109/JAS.2022.105464
    [130]
    M. Perslev, M. H. Jensen, S. Darkner, P. J. Jennum, and C. Igel, “U-time: A fully convolutional network for time series segmentation applied to sleep staging,” in Proc. 33rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 397.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (18) PDF downloads(5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return