Citation: | M. Wang, J. Zhang, J. Ma, and X. Guo, “Cas-FNE: Cascaded face normal estimation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2423–2434, Dec. 2024. doi: 10.1109/JAS.2024.124899 |
[1] |
G. Retsinas, P. P. Filntisis, R. Danecek, V. F. Abrevaya, A. Roussos, T. Bolkart, and P. Maragos, “3D facial expressions through analysis-by-neural-synthesis,” arXiv preprint arXiv: 2404.04104, 2024.
|
[2] |
B. Lei, J. Ren, M. Feng, M. Cui, and X. Xie, “A hierarchical representation network for accurate and detailed face reconstruction from in-the-wild images,” arXiv preprint arXiv: 2302.14434, 2023.
|
[3] |
R. Daněěek, M. J. Black, and T. Bolkart, “Emoca: Emotion driven monocular face capture and animation,” arXiv preprint arXiv: 2204.11312, 2022.
|
[4] |
Y. Feng, H. Feng, M. J. Black, and T. Bolkart, “Learning an animatable detailed 3d face model from in-the-wild images,” ACM Trans. Graphics, vol. 40, no. 4, p. 88, Aug. 2021.
|
[5] |
Z. Li, Z. Lu, H. Yan, B. Shi, G. Pan, Q. Zheng, and X. Jiang, “Spin-up: Spin light for natural light uncalibrated photometric stereo,” arXiv preprint arXiv: 2404.01612, 2024.
|
[6] |
B. Yu, J. Ren, J. Han, F. Wang, J. Liang, and B. Shi, “EventPS: Real-time photometric stereo using an event camera,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2024, pp. 9602–9611.
|
[7] |
S. Ikehata, “Scalable, detailed and mask-free universal photometric stereo,” arXiv preprint arXiv: 2303.00308, 2023.
|
[8] |
M. Wang, X. Guo, W. Dai, and J. Zhang, “Face inverse rendering via hierarchical decoupling,” IEEE Trans. Image Processing, vol. 31, pp. 5748–5761, Aug. 2022. doi: 10.1109/TIP.2022.3201466
|
[9] |
M. Wang, C. Wang, X. Guo, and J. Zhang, “Towards high-fidelity face normal estimation,” in Proc. 30th ACM Int. Conf. Multimedia, Lisboa, Portugal, 2022, pp. 5172–5180.
|
[10] |
V. F. Abrevaya, A. Boukhayma, P. H. S. Torr, and E. Boyer, “Cross-modal deep face normals with deactivable skip connections,” arXiv preprint arXiv: 2003.09691, 2020.
|
[11] |
X. Chen, Y. Zheng, Y. Zheng, Q. Zhou, H. Zhao, G. Zhou, and Y.-Q. Zhang, “DPF: Learning dense prediction fields with weak supervision,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, pp. 15347–15357.
|
[12] |
M. Rossi, M. El Gheche, A. Kuhn, and P. Frossard, “Joint graph-based depth refinement and normal estimation,” arXiv preprint arXiv: 1912.01306, 2020.
|
[13] |
Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and T. Funkhouser, “Physically-based rendering for indoor scene understanding using convolutional neural networks,” arXiv preprint arXiv: 1612.07429, 2017.
|
[14] |
Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras, “Neural face editing with intrinsic image disentangling,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 5444–5453.
|
[15] |
K. Zhang, Y. Su, X. Guo, L. Qi, and Z. Zhao, “MU-GAN: Facial attribute editing based on multi-attention mechanism,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1614–1626, Sep. 2021. doi: 10.1109/JAS.2020.1003390
|
[16] |
M. Wang, W. Dai, X. Guo, and J. Zhang, “Face inverse rendering from single images in the wild,” in Proc. IEEE Int. Conf. Multimedia and Expo, Taipei, China, 2022, pp. 1–6.
|
[17] |
A. Lattas, S. Moschoglou, S. Ploumpis, B. Gecer, J. Deng, and S. Zafeiriou, “FitMe: Deep photorealistic 3D morphable model avatars,” arXiv preprint arXiv: 2305.09641, 2023.
|
[18] |
N. Yang, B. Xia, Z. Han, and T. Wang, “A domain-guided model for facial cartoonlization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1886–1888, Oct. 2022. doi: 10.1109/JAS.2022.105887
|
[19] |
Y. Zheng, Y. Wang, G. Wetzstein, M. J. Black, and O. Hilliges, “PointAvatar: Deformable point-based head avatars from videos,” arXiv preprint arXiv: 2212.08377, 2023.
|
[20] |
G. Trigeorgis, P. Snape, I. Kokkinos, and S. Zafeiriou, “Face normals “in-the-wild” using fully convolutional networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 340–349.
|
[21] |
S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Jacobs, “SfSNet: Learning shape, reflectance and illuminance of faces ‘in the wild’,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 6296–6305.
|
[22] |
J. E. Laird, P. S. Rosenbloom, and A. Newell, “Towards chunking as a general learning mechanism,” in Proc. 4th AAAI Conf. Artificial Intelligence, Austin, USA, 1984, pp. 188–192.
|
[23] |
Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 3730–3738.
|
[24] |
X. Long, Y. Zheng, Y. Zheng, B. Tian, C. Lin, L. Liu, H. Zhao, G. Zhou, and W. Wang, “Adaptive surface normal constraint for geometric estimation from monocular images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 9, pp. 6263–6279, Sep. 2024. doi: 10.1109/TPAMI.2024.3381710
|
[25] |
R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 8, pp. 690–706, Aug. 1999. doi: 10.1109/34.784284
|
[26] |
Y. Wang, L. Zhang, Z. Liu, G. Hua, Z. Wen, Z. Zhang, and D. Samaras, “Face relighting from a single image under arbitrary unknown lighting conditions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 1968–1984, Nov. 2009. doi: 10.1109/TPAMI.2008.244
|
[27] |
S. Biswas, G. Aggarwal, and R. Chellappa, “Robust estimation of albedo for illumination-invariant matching and shape recovery,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 884–899, May 2009. doi: 10.1109/TPAMI.2008.135
|
[28] |
M. K. Johnson and E. H. Adelson, “Shape estimation in natural illumination,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 2553–2560.
|
[29] |
J. T. Barron and J. Malik, “Shape, albedo, and illumination from a single image of an unknown object,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 334–341.
|
[30] |
Y. Xiong, A. Chakrabarti, R. Basri, S. J. Gortler, D. W. Jacobs, and T. Zickler, “From shading to local shape,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 1, pp. 67–79, Jan. 2015. doi: 10.1109/TPAMI.2014.2343211
|
[31] |
Y. Mei, Y. Zeng, H. Zhang, Z. Shu, X. Zhang, S. Bi, J. Zhang, H. J. Jung, and V. M. Patel, “Holo-relighting: Controllable volumetric portrait relighting from a single image,” arXiv preprint arXiv: 2403.09632, 2024.
|
[32] |
Y. Cheng, Z. Chen, X. Ren, W. Zhu, Z. Xu, D. Xu, C. Yang, and Y. Yan, “3D-aware face editing via warping-guided latent direction learning,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2024, pp. 916–926.
|
[33] |
Z. Cai, K. Jiang, S.-Y. Chen, Y.-K. Lai, H. Fu, B. Shi, and L. Gao, “Real-time 3d-aware portrait video relighting,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2024, pp. 6221–6231.
|
[34] |
A. Ranjan, K. M. Yi, J.-H. R. Chang, and O. Tuzel, “FaceLit: Neural 3D relightable faces,” arXiv preprint arXiv: 2303.15437, 2023.
|
[35] |
L. Zhang, J. Liu, B. Zhang, D. Zhang, and C. Zhu, “Deep cascade model-based face recognition: When deep-layered learning meets small data,” IEEE Trans. Image Process., vol. 29, pp. 1016–1029, Sep. 2019.
|
[36] |
Q. Wang, T. Wu, H. Zheng, and G. Guo, “Hierarchical pyramid diverse attention networks for face recognition,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 8323–8332.
|
[37] |
F. Xue, Z. Tan, Y. Zhu, Z. Ma, and G. Guo, “Coarse-to-fine cascaded networks with smooth predicting for video facial expression recognition,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, New Orleans, USA, 2022, pp. 2411–2417.
|
[38] |
B. Yu and D. Tao, “Anchor cascade for efficient face detection,” IEEE Trans. Image Process., vol. 28, no. 5, pp. 2490–2501, May 2019. doi: 10.1109/TIP.2018.2886790
|
[39] |
J. Lou, X. Cai, J. Dong, and H. Yu, “Real-time 3D facial tracking via cascaded compositional learning,” IEEE Trans. Image Process., vol. 30, pp. 3844–3857, Mar. 2021. doi: 10.1109/TIP.2021.3065819
|
[40] |
S. Ma, Y. Wang, Y. Wei, J. Fan, T. H. Li, H. Liu, and F. Lv, “CAT: Localization and identification cascade detection transformer for open-world object detection,” arXiv preprint arXiv: 2301.01970, 2023.
|
[41] |
R. Wu, G. Zhang, S. Lu, and T. Chen, “Cascade EF-GAN: Progressive facial expression editing with local focuses,” arXiv preprint arXiv: 2003.05905, 2020.
|
[42] |
L. Chen, R. K. Maddox, Z. Duan, and C. Xu, “Hierarchical cross-modal talking face generation with dynamic pixel-wise loss,” arXiv preprint arXiv: 1905.03820, 2019.
|
[43] |
X. Li, Z. Liu, P. Luo, C. C. Loy, and X. Tang, “Not all pixels are equal: Difficulty-aware semantic segmentation via deep layer cascade,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 6459–6468.
|
[44] |
D. Lin, G. Chen, D. Cohen-Or, P.-A. Heng, and H. Huang, “Cascaded feature network for semantic segmentation of RGB-D images,” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 1320–1328.
|
[45] |
P. Hu, G. Wang, X. Kong, J. Kuen, and Y.-P. Tan, “Motion-guided cascaded refinement network for video object segmentation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 1400–1409.
|
[46] |
K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “Hybrid task cascade for instance segmentation,” arXiv preprint arXiv: 1901.07518, 2019.
|
[47] |
H. Ding, S. Qiao, A. Yuille, and W. Shen, “Deeply shape-guided cascade for instance segmentation,” arXiv preprint arXiv: 1911.11263, 2021.
|
[48] |
E. Chouzenoux, J. Idier, and S. Moussaoui, “A majorize–minimize strategy for subspace optimization applied to image restoration,” IEEE Trans. Image Process., vol. 20, no. 6, pp. 1517–1528, Jun. 2011. doi: 10.1109/TIP.2010.2103083
|
[49] |
J. Xie, J. Yang, J. J. Qian, Y. Tai, and H. M. Zhang, “Robust nuclear norm-based matrix regression with applications to robust face recognition,” IEEE Trans. Image Process., vol. 26, no. 5, pp. 2286–2295, May 2017. doi: 10.1109/TIP.2017.2662213
|
[50] |
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv preprint arXiv: 1512.03385, 2016.
|
[51] |
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vision, vol. 115, no. 3, pp. 211–252, Apr. 2015. doi: 10.1007/s11263-015-0816-y
|
[52] |
L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv preprint arXiv: 1508.06576, 2015.
|
[53] |
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” arXiv preprint arXiv: 1611.07004, 2017.
|
[54] |
S. Zafeiriou, M. Hansen, G. Atkinson, V. Argyriou, M. Petrou, M. Smith, and L. Smith, “The photoface database,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 132–139.
|
[55] |
C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300 faces in-the-wild challenge: The first facial landmark localization challenge,” in Proc. IEEE Int. Conf. Computer Vision Workshops, Sydney, Australia, 2013, pp. 397–403.
|
[56] |
T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” arXiv preprint arXiv: 1812.04948, 2019.
|
[57] |
A. D. Bagdanov, A. Del Bimbo, and I. Masi, “The Florence 2D/3D hybrid face dataset,” in Proc. Joint ACM Workshop on Human Gesture and Behavior Understanding, Scottsdale, USA, 2011, pp. 79–80.
|
[58] |
W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec, “Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination,” in Proc. 18th Eurographics Conf. Rendering Techniques, Grenoble, France, 2007, pp. 183–194.
|
[59] |
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deeplearning library,” in Proc. 33rd Int. Conf. Neural Information Processing Systems, Vancouver Canada, 2019, pp. 721.
|
[60] |
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv: 1412.6980, 2014.
|
[61] |
L. Guo, H. Zhu, Y. Lu, M. Wu, and X. Cao, “RAFaRe: Learning robust and accurate non-parametric 3D face reconstruction from pseudo 2D&3D pairs,” in Proc. 37th AAAI Conf. Artificial Intelligence, Washington, USA, 2023, pp. 719–727.
|
[62] |
Z. Zhang, Y. Ge, R. Chen, Y. Tai, Y. Yan, J. Yang, C. Wang, J. Li, and F. Huang, “Learning to aggregate and personalize 3D face from in-the-wild photo collection,” arXiv preprint arXiv: 2106.07852, 2021.
|
[63] |
Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3D face reconstruction and dense alignment with position map regression network,” in Proc. 15th European Conf. Computer Vision, Munich, Germany, 2018, pp. 557–574.
|
[64] |
A. Bansal, B. Russell, and A. Gupta, “Marr revisited: 2D-3D alignment via surface normal prediction,” arXiv preprint arXiv: 1604.01347, 2016.
|
[65] |
I. Kokkinos, “UberNet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory,” arXiv preprint arXiv: 1609.02132, 2016.
|
[66] |
X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face alignment in full pose range: A 3D total solution,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 1, pp. 78–92, Jan. 2019. doi: 10.1109/TPAMI.2017.2778152
|
[67] |
N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-resolution with cascading residual network,” in Proc. 15th European Conf. Computer Vision, Munich, Germany, 2018, pp. 256–272.
|
[68] |
L. Zhang, Y. He, Q. Zhang, Z. Liu, X. Zhang, and C. Xiao, “Document image shadow removal guided by color-awarebackground,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, pp. 1818–1827.
|
[69] |
J. Li, Z. Zhang, X. Liu, C. Feng, X. Wang, L. Lei, and W. Zuo, “Spatially adaptive self-supervised learning for real-world image denoising,” arXiv preprint arXiv: 2303.14934, 2023.
|
[70] |
S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient transformer for high-resolution image restoration,” arXiv preprint arXiv: 2111.09881, 2022.
|
[71] |
T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and improving the image quality of styleGAN,” arXiv preprint arXiv: 1912.04958, 2020.
|
[72] |
X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 1510–1519.
|