Citation: | J. Qu, Z. Ji, J. Wang, and Y. Liu, “Necessary and sufficient conditions for controllability and essential controllability of directed circle and tree graphs,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.124866 |
[1] |
R. Olfati-Saber, and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. doi: 10.1109/TAC.2004.834113
|
[2] |
C. Altafini, “Consensus problems on networks with antagonistic interactions,” IEEE Trans. Automatic Control, vol. 58, no. 4, pp. 935–946, 2013. doi: 10.1109/TAC.2012.2224251
|
[3] |
H. Sun, Y. Liu, F. Li, and X. Niu, “Distributed LQR optimal protocol for leader-following consensus,” IEEE Trans. Cybernetics, vol. 49, no. 9, pp. 3532–3546, 2019. doi: 10.1109/TCYB.2018.2850760
|
[4] |
O. Skeik, A. Lanzo, “Distributed robust stabilization of networked multiagent systems with strict negative imaginary uncertainties,” Int. Journal of Robust and Nonlinear Control, vol. 29, no. 14, pp. 4845–4858, 2019. doi: 10.1002/rnc.4652
|
[5] |
M. Li, M. Ma, L. Wang, Z. Pei, J. Ren, and B. Yang, “Multiagent deep reinforcement learning based incentive mechanism for mobile crowdsensingin intelligent transportation systems,” IEEE System Journal doi: 10.1109/JSYST.2024.3351310
|
[6] |
G. Zhabelova and V. Vyatkin, “Multiagent smart grid automation architecture based on IEC 61850/61499 intelligent logical nodes,” IEEE Trans. Industrial Electronics, vol. 59, no. 5, pp. 2351–2362, 2012. doi: 10.1109/TIE.2011.2167891
|
[7] |
P. Leitão, V. Mařík, and P. Vrba, “Past, present, and future of industrial agent applications,” IEEE Trans. Industrial Informatics, vol. 9, no. 4, pp. 2360–2372, 2013. doi: 10.1109/TII.2012.2222034
|
[8] |
H. G. Tanner, “On the controllability of nearest neighbor interconnections,” In Proceeding of the 43rd IEEE Conf. on Decision and Control, Atlantis, Paradise Island, Bahamas, December 14–17, 2004, 2464–2472.
|
[9] |
A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, “Controllability of multi-agent systems from a graph-theoretic perspective,” SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 162–186, 2009. doi: 10.1137/060674909
|
[10] |
Z. Ji, Z. Wang, H. Lin and Z. Wang, “Interconnection topologies for multi-agent coordination under leader-follower framework,” Automatica, vol. 45, pp. 2857–2863, 2009. doi: 10.1016/j.automatica.2009.09.002
|
[11] |
C. Sun, G. Hu, and L. Xie, “Controllability of multiagent networks with antagonistic interactions,” IEEE Trans. Automatic Control, vol. 62, no. 10, pp. 5457–5462, 2017. doi: 10.1109/TAC.2017.2697202
|
[12] |
G. Notarstefano, G. Parlangeli, “Controllability and observability of grid graphs via reduction and symmetries,” IEEE Trans. Automatic Control, vol. 58, no. 7, pp. 1719–1731, 2013. doi: 10.1109/TAC.2013.2241493
|
[13] |
X. Liu and Z. Ji, “Controllability of multi-agent systems based on path and cycle graphs,” Int. Journal of Robust and Nonlinear Control, vol. 28, no. 1, pp. 296–309, 2017.
|
[14] |
G. Parlangeli and G. Notarstefano, “On the reachability and observability of path and cycle graphs,” IEEE Trans. Automatic Control, vol. 57, no. 3, pp. 743–748, 2012. doi: 10.1109/TAC.2011.2168912
|
[15] |
B. She, S. Mehta, C. Ton, and Z. Kan, “Controllability ensured leader group selection on signed multiagent networks,” IEEE Trans. Cybernetics, vol. 50, no. 1, pp. 222–232, 2020. doi: 10.1109/TCYB.2018.2868470
|
[16] |
S. S. Mousavi, M. Haeri, and M. Mesbahi, “Laplacian dynamics on cographs: controllability analysis through joins and unions,” IEEE Trans. Automatic Control, vol. 66, no. 3, pp. 1383–1390, 2021. doi: 10.1109/TAC.2020.2992444
|
[17] |
B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader-follower dynamic network with switching topology,” IEEE Trans. Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008. doi: 10.1109/TAC.2008.919548
|
[18] |
J. Yan, B. Hu, Z. Guan, Y. Hou, and L. Shi, “New controllability criteria for linear switched and impulsive systems,” IEEE/CAA Journal of Automatica Sinica, p. , 2024. doi: 10.1109/JAS.2024.124272
|
[19] |
M. Xue and S. Roy, “Modal barriers to controllability in networks with linearly coupled homogeneous subsystems,” IEEE Trans. Automatic Control, vol. 66, no. 12, pp. 6187–6193, 2021. doi: 10.1109/TAC.2021.3063948
|
[20] |
S. Hsu, “Constructing a controllable graph under edge constraints,” System & Control Letter, vol. 107, pp. 110–116, 2017.
|
[21] |
S. Hsu, “Laplacian controllability of interconnected graphs,” IEEE Trans. Control of Network System, vol. 7, no. 2, pp. 797–806, 2020. doi: 10.1109/TCNS.2019.2947589
|
[22] |
C. O. Aguilar and B. Gharesifard, “Graph controllability classes for the Laplacian leader-follower dynamics,” IEEE Trans. Automatic Control, vol. 60, no. 6, pp. 1611–1623, 2015. doi: 10.1109/TAC.2014.2381435
|
[23] |
Z. Ji, H. Lin, S. Cao, Q. Qi, and H. Ma, “The complexity in complete graphic characterizations of multiagent controllability,” IEEE Trans. Cybernetics, vol. 51, no. 1, pp. 64–76, 2021. doi: 10.1109/TCYB.2020.2972403
|
[24] |
M. Cao, S. Zhang, and M. Kanat Camlibel, “A class of uncontrollable diffusively coupled multiagent systems with multichain topologies,” IEEE Trans. Automatic Control, vol. 58, no. 2, pp. 465–469, 2013. doi: 10.1109/TAC.2012.2208314
|
[25] |
C. O. Aguilar, “Strongly uncontrollable network topologies,” IEEE Trans. Control of Network Systems, vol. 7, no. 2, pp. 878–886, 2020. doi: 10.1109/TCNS.2019.2951665
|
[26] |
C. O. Aguilar, B. Gharesifard, “Almost equitable partitions and new necessary conditions for network controllability,” Automatica, vol. 80, pp. 25–31, 2017. doi: 10.1016/j.automatica.2017.01.018
|
[27] |
X. Liu, Z. Ji, and T. Hou, “Graph partitions and the controllability of directed signed networks,” SCIENCE CHINA Information Sciences, vol. 62, pp. 042202:1–042202:11, 2018.
|
[28] |
Y. Guan, and L. Wang, “Controllability of multi-agent systems with directed and weighted signed networks,” System & Control Letter, vol. 116, pp. 47–55, 2017.
|
[29] |
A. Y. Yazicioğlu, W. Abbas, and M. Egerstedt, “Graph distances and controllability of networks,” IEEE Trans. Automatic Control, vol. 61, no. 12, pp. 4125–4130, 2016. doi: 10.1109/TAC.2016.2546180
|
[30] |
S. Zhang, M. Cao, and M. K. Camlibel, “Upper and lower bounds for controllable subspaces of networks of diffusively coupled agents,” IEEE Trans. Automatic Control, vol. 59, no. 3, pp. 745–750, 2014. doi: 10.1109/TAC.2013.2275666
|
[31] |
M. Shabbir, W. Abbas, A. Y. Yazicioğlu, and X. Koutsoukos, “Computation of the distance-based bound on strong structural controllability in networks,” IEEE Trans. Automatic Control, p. , 2022. doi: 10.1109/TAC.2022.3160682
|
[32] |
Y. Guan, S. Chao, A. Li, “Edge controllability of signed networks,” Automatica, vol. 147, pp. 1–10, 2023.
|
[33] |
J. Jia, H. L. Trentelman, W. Baar, and M. K. Camlibel, “Strong structural controllability of systems on colored graphs,” IEEE Trans. Automatic Control, vol. 65, no. 10, pp. 3977–3990, 2020. doi: 10.1109/TAC.2019.2948425
|
[34] |
S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong structural controllability of undirected networks,” IEEE Trans. Automatic Control, vol. 63, no. 7, pp. 2234–2241, 2018. doi: 10.1109/TAC.2017.2762620
|
[35] |
C. Lin, “Structural controllability,” IEEE Trans. Automatic Control, vol. 19, no. 3, pp. 201–208, 1974. doi: 10.1109/TAC.1974.1100557
|
[36] |
G. Frobenius, “Uber matrizen aus nicht negativen elementen,” Sitzungsber Press, Berlin Wiss, pp. 456-477, 1912.
|
[37] |
N. Monshizadeh, S. Zhang, and M. Kanat Camlibel, “Zero forcing sets and controllability of dynamical systems defined on graphs,” IEEE Trans. Automatic Control, vol. 59, no. 9, pp. 2562–2567, 2014. doi: 10.1109/TAC.2014.2308619
|
[38] |
W. Yueh, “Eigenvalues of several tridiagonal matrices,” Applied Mathmatics E-notes, vol. 5, pp. 66–74, 2005.
|