A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
P.-M. Liu, X.-G. Guo, J.-L. Wang, D. Coutinho, and L. Xie, “Chattering-free fault-tolerant cluster control and fault direction identification for HIL UAV swarm with pre-specified performance,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–15, Jan. 2025. doi: 10.1109/JAS.2024.124827
Citation: P.-M. Liu, X.-G. Guo, J.-L. Wang, D. Coutinho, and L. Xie, “Chattering-free fault-tolerant cluster control and fault direction identification for HIL UAV swarm with pre-specified performance,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–15, Jan. 2025. doi: 10.1109/JAS.2024.124827

Chattering-Free Fault-Tolerant Cluster Control and Fault Direction Identification for HIL UAV Swarm With Pre-Specified Performance

doi: 10.1109/JAS.2024.124827
Funds:  This work was supported in part by the National Natural Science Foundation of China (62173028, 62233015, 62173024), the Guangdong Basic and Applied Basic Research Foundation (2024A1515011493), the Science, Technology & Innovation Project of Xiongan New Area (2023XAGG0062), Beijing Natural Science Foundation (4232060), the International Scientists Project, Beijing Natural Science Foundation (IS23065), and the Brazilian Research Council (303289/2022-8)
More Information
  • In this paper, the problem of pre-specified performance fault-tolerant cluster consensus control and fault direction identification is solved for the human-in-the-loop (HIL) swarm unmanned aerial vehicles (UAVs) in the presence of possible nonidentical and unknown direction faults (NUDFs) in the yaw channel. The control strategy begins with the design of a pre-specified performance event-triggered observer for each individual UAV. These observers estimate the outputs of the human controlled UAVs, and simultaneously achieve the distributed design of actual control signals as well as cluster consensus of the observer output. It is worth mentioning that these observers require neither the high-order derivatives of the human controlled UAVs’ output nor a priori knowledge of the initial conditions. The fault-tolerant controller realizes the pre-specified performance output regulation through error transformation and the Nussbaum function. It should be pointed out that there are no chattering caused by the jump of the Nussbaum function when a reverse fault occurs. In addition, to provide a basis for further solving the problem of physical malfunctions, a fault direction identification algorithm is proposed to accurately identify whether a reverse fault has occurred. Simulation results verify the effectiveness of the proposed control and fault direction identification strategies when the reverse faults occur.

     

  • loading
  • [1]
    L. Cao, H. Ren, W. Meng, H. Li, and R. Lu, “Distributed event triggering control for six-rotor UAV systems with asymmetric time-varying output constraints,” Sci. China-Inf. Sci., vol. 64, no. 7, Art. No. 172213, Jul. 2021. doi: 10.1007/s11432-020-3128-2
    [2]
    D. G. Pasquale and M. E. Valcher, “Consensus for clusters of agents with cooperative and antagonistic relationships,” Automatica, vol. 135, Art. No. 110002, Nov. 2022. doi: 10.1016/j.automatica.2021.110002
    [3]
    P. M. Liu, X. G. Guo, J. L. Wang, D. Coutinho, and Z. G. Wu, “Preset-time and preset-accuracy human-in-the-loop cluster consensus control for MASs under stochastic actuation attacks,” IEEE Trans. Autom. Control, vol. 69, no. 3, pp. 1675–1688, Mar. 2024. doi: 10.1109/TAC.2023.3326059
    [4]
    D. Liu and D. Ye, “Cluster synchronization of complex networks under denial-of-service attacks with distributed adaptive strategies,” IEEE Trans. Control Netw. Syst., vol. 9, no. 1, pp. 334–343, Mar. 2022. doi: 10.1109/TCNS.2021.3102012
    [5]
    D. Y. Zhang and X. J. Li, “Design of strictly stealthy attacks for nonlinear multiagent systems under distributed attack detection mechanism,” Inf. Sci., vol. 639, Art. No. 118976, Apr. 2023. doi: 10.1016/j.ins.2023.118976
    [6]
    L. Xia, Q. Li, R. Song, and Y. Feng, “Dynamic event-triggered leader-follower control for multiagent systems subject to input time delay,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 3, pp. 1970–1981, Mar. 2023. doi: 10.1109/TSMC.2022.3210709
    [7]
    J. J. R. Liu, N. Yang, K.-W. Kwok, and J. Lam, “Positive consensus of directed multiagent systems,” IEEE Trans. Autom. Control, vol. 67, no. 7, pp. 3641–3646, Jul. 2022. doi: 10.1109/TAC.2021.3108517
    [8]
    G. Lin, H. Li, C. K. Ahn, and D. Yao, “Event-based finite-time neural control for human-in-the-loop UAV attitude systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 12, pp. 10387–10397, Dec. 2022.
    [9]
    H. Wu, X. Zhang, and R. Li, “Synthesis with guaranteed cost and less human intervention for human-in-the-loop control systems,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 7541–7551, Aug. 2022. doi: 10.1109/TCYB.2020.3041033
    [10]
    G. Lin, H. Li, H. Ma, D. Yao, and R. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 111–122, Jan. , 2022.
    [11]
    Y. Cao, J. Cao, and Y. Song, “Practical prescribed time tracking control over infinite time interval involving mismatched uncertainties and non-vanishing disturbances,” Automatica, vol. 136, Art. No. 110050, Dec. 2022. doi: 10.1016/j.automatica.2021.110050
    [12]
    C. Ma and D. Dong, “Finite-time prescribed performance time-varying formation control for second-order multi-agent systems with non-strict feedback based on a neural network observer,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1039–1050, Apr. 2024. doi: 10.1109/JAS.2023.123615
    [13]
    D. H. Luo, Y. J. Wang, and Y. D. Song, “Practical prescribed time tracking control with bounded time-varying gain under non-vanishing uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 219–230, Jan. 2024. doi: 10.1109/JAS.2023.123738
    [14]
    B. Zhou, K.-K. Zhang, and H. Jiang, “Prescribed-time control of perturbed nonholonomic systems by time-varying feedback,” Autom atica, vol. 155, Art. No. 111125, Jun. 2023. doi: 10.1016/j.automatica.2023.111125
    [15]
    W. Li and M. Krstic, “Prescribed-time output-feedback control of stochastic nonlinear systems,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1431–1446, Mar. 2023. doi: 10.1109/TAC.2022.3151587
    [16]
    T. F. Ding, M. F. Ge, C. Xiong, Z. W. Liu, and G. Ling, “Prescribed-time formation tracking of second-order multi-agent networks with directed graphs,” Automatica, vol. 152, Art. No. 110997, Mar. 2023. doi: 10.1016/j.automatica.2023.110997
    [17]
    M. Lv, Z. Chen, B. De Schutter, and S. Baldi, “Prescribed-performance tracking for high-power nonlinear dynamics with time-varying unknown control coefficients,” Automatica, vol. 146, Art. No. 110584, Sep. 2022. doi: 10.1016/j.automatica.2022.110584
    [18]
    C. P. Bechlioulis and G. A. Rovithakis, “Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1220–1226, May 2010. doi: 10.1109/TAC.2010.2042508
    [19]
    H. Ma, Q. Zhou, H. Li, and R. Lu, “Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 12905–12915, Dec. 2021.
    [20]
    Y. J. Liu, Q. Zeng, S. C. Tong, C. L. P. Chen, and L. Liu, “Actuator failure compensation-based adaptive control of active suspension systems with prescribed performance,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 7044–7053, Aug. 2020. doi: 10.1109/TIE.2019.2937037
    [21]
    H. R. Ren, Z. Y. Liu, H. J. Liang, and H. Y. Li, “Pinning-based neural control for multiagent systems with self-regulation intermediate event-triggered method,” IEEE Trans. Neural Netw. Learn. Syst., 2024, doi: 10.1109/TNNLS.2024.3386881.
    [22]
    P. Chen, X. Luan, and F. Liu, “MT-filters-based event-triggered adaptive prescribed performance tracking control of multi-agent systems with unknown direction actuator failure,” Int. J. Robust Nonlinear Control, vol. 33, no. 14, pp. 8224–8253, Sep. 2023. doi: 10.1002/rnc.6817
    [23]
    B. Xu, A. Suleman, and Y. Shi, “A multi-rate hierarchical fault-tolerant adaptive model predictive control framework: Theory and design for quadrotors,” Automatica, vol. 153, Art. No. 111015, Apr. 2023. doi: 10.1016/j.automatica.2023.111015
    [24]
    M. Chen, K. Yan, and Q. Wu, “Multiapproximator-based fault-tolerant tracking control for unmanned autonomous helicopter with input saturation,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 9, pp. 5710–5722, Sep. 2022. doi: 10.1109/TSMC.2021.3131179
    [25]
    H. Ren, H. Ma, H. Li, and Z. Wang, “Adaptive fixed-time control of nonlinear mass with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1252–1262, May 2023. doi: 10.1109/JAS.2023.123558
    [26]
    T. Yang and J. Dong, “Predefined-time adaptive fault-tolerant control for switched odd-rational-power multi-agent systems,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 4, pp. 2423–2434, Oct. 2023. doi: 10.1109/TASE.2022.3208029
    [27]
    J. Zheng and Z. Hou, “Model free adaptive iterative learning control based fault-tolerant control for subway train with speed sensor fault and over-speed protection,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 1, pp. 168–180, Jan. 2024. doi: 10.1109/TASE.2022.3225288
    [28]
    Y. Ju, D. Ding, X. He, Q.-L. Han, and G. Wei, “Consensus control of multi-agent systems using fault-estimation-in-the-loop: Dynamic event-triggered case,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1440–1451, Aug. , 2022. doi: 10.1109/JAS.2021.1004386
    [29]
    C. Liu, B. Jiang, X. Wang, H. Yang, and S. Xie, “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, Jun. 2022. doi: 10.1109/JAS.2022.105419
    [30]
    H. Y. Li, Y. Wu, M. Chen, and R. Q. Lu, “Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 1, pp. 144–156, Jan. 2023. doi: 10.1109/TNNLS.2021.3090570
    [31]
    X. G. Guo, W. D. Xu, J. L. Wang, and J. H. Park, “Distributed neuroadaptive fault-tolerant sliding-mode control for 2-D plane vehicular platoon systems with spacing constraints and unknown direction faults,” Automatica, vol. 129, Art. No. 109675, Apr. 2021. doi: 10.1016/j.automatica.2021.109675
    [32]
    X. G. Guo, P. M. Liu, Z. G. Wu, D. Zhang, and C. K. Ahn, “Hybrid event-triggered group consensus control for heterogeneous multi-agent systems with TVNUD faults and stochastic FDI attacks,” IEEE Trans. Autom. Control, vol. 68, no. 12, pp. 8013–8020, Dec. 2023. doi: 10.1109/TAC.2023.3254368
    [33]
    P. M. Liu, X. G. Guo, J. L. Wang, X. P. Xie, and F. W. Yang, “Fully distributed hierarchical ET intrusion-and fault-tolerant group control for MASs with application to robotic manipulators,” IEEE Trans. Autom. Sci. Eng., 2023, doi: 10.1109/TASE.2023.3270489.
    [34]
    W. D. Xu, X. G. Guo, J. L. Wang, W. W. Che, and Z. G. Wu, “Nonlinear disturbance observer-based fault-tolerant sliding-mode control for 2-d plane vehicular platoon with UTVFD and ANAS,” IEEE Trans. Cybern., vol. 54, no. 4, pp. 2050–2061, Apr. 2024. doi: 10.1109/TCYB.2022.3222496
    [35]
    X. Y. Guo, C. Wang, Z. Dong, and Z. Ding, “Adaptive containment control for heterogeneous mimo nonlinear multi-agent systems with unknown direction actuator faults,” IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5783–5790, Sep. 2022.
    [36]
    J. Y. Lei, Y. X. Li, and S. C. Tong, “Distributed adaptive asymptotic tracking of 2-D vehicular platoon systems with actuator faults and spacing constraints,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1352–1354, May 2023. doi: 10.1109/JAS.2023.123150
    [37]
    Q. Lai, Z. Zhang, K. Xu, and X. Yin, “A new method of fault direction identification for different types of renewable energy source integrations,” IEEE Trans. Power Delivery, vol. 37, no. 4, pp. 2932–2941, Apr. 2022. doi: 10.1109/TPWRD.2021.3119356
    [38]
    J. Huang, Y. Song, W. Wang, C. Wen, and G. Li, “Smooth control design for adaptive leader-following consensus control of a class of high-order nonlinear systems with time-varying reference,” Automatica, vol. 83, pp. 361–367, Sep. 2017. doi: 10.1016/j.automatica.2017.06.025
    [39]
    H. Zhang, F. L. Lewis, and A. Das, “Optimal design for synchronization of cooperative systems: State feedback, observer and output feedback,” IEEE Trans. Autom. Control, vol. 56, no. 8, pp. 1948–1952, Aug. 2011. doi: 10.1109/TAC.2011.2139510
    [40]
    H. Guo, M. Chen, Y. Jiang, and M. Lungu, “Distributed adaptive human-in-the-loop event-triggered formation control for QUAVs with quantized communication,” IEEE Trans. Ind. Inf., vol. 19, no. 6, pp. 7572–7582, Jun. 2023. doi: 10.1109/TII.2022.3211508
    [41]
    W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, and M. Sharma, “Command filtered adaptive backstepping,” IEEE Trans. Control Syst. Technol., vol. 20, no. 3, pp. 566–580, May 2012. doi: 10.1109/TCST.2011.2121907
    [42]
    H. R. Ren, Y. Wang, M. Liu, and H. Y. Li, “An optimal estimation framework of multi-agent systems with random transport protocol,” IEEE Trans. Signal Process., vol. 70, pp. 2548–2559, May 2022. doi: 10.1109/TSP.2022.3175020

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (88) PDF downloads(21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return