A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
K. Rsetam, Z. Cao, Z. Man, and X.-M. Zhang, “GPIO-based continuous sliding mode control for networked control systems under communication delays with experiments on servo motors,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–15, Jan. 2025. doi: 10.1109/JAS.2024.124812
Citation: K. Rsetam, Z. Cao, Z. Man, and X.-M. Zhang, “GPIO-based continuous sliding mode control for networked control systems under communication delays with experiments on servo motors,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–15, Jan. 2025. doi: 10.1109/JAS.2024.124812

GPIO-Based Continuous Sliding Mode Control for Networked Control Systems Under Communication Delays With Experiments on Servo Motors

doi: 10.1109/JAS.2024.124812
Funds:  This work was supported in part by the Australian Research Council Discovery Project (DP190101557)
More Information
  • To handle input and output time delays that commonly exist in many networked control systems (NCSs), a new robust continuous sliding mode control (CSMC) scheme is proposed for the output tracking in uncertain single input-single-output (SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation (PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer (GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also network-induced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed. The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser’s servo module for motion control under various test conditions.

     

  • loading
  • [1]
    Y.-W. Wang, W.-A. Zhang, and L. Yu, “A linear active disturbance rejection control approach to position synchronization control for networked interconnected motion system,” IEEE Trans. Control Netw. Syst., vol. 7, no. 4, pp. 1746–1756, Dec. 2020. doi: 10.1109/TCNS.2020.2999305
    [2]
    J. Zhang and C. Peng, “Guaranteed cost control of uncertain networked control systems with a hybrid communication scheme,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 50, no. 9, pp. 3126–3135, Sep. 2020. doi: 10.1109/TSMC.2018.2833203
    [3]
    E. Nuño, A. Loría, T. Hernández, M. Maghenem, and E. Panteley, “Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays,” Automatica, vol. 120, p. 109114, Oct. 2020. doi: 10.1016/j.automatica.2020.109114
    [4]
    M. Bagheri, P. Naseradinmousavi, and M. Krstić, “Feedback linearization based predictor for time delay control of a high-DOF robot manipulator,” Automatica, vol. 108, p. 108485, Oct. 2019. doi: 10.1016/j.automatica.2019.06.037
    [5]
    C. Suryendu and B. Subudhi, “Formation control of multiple autonomous underwater vehicles under communication delays,” IEEE Trans. Circuits Syst. Ⅱ: Exp. Briefs, vol. 67, no. 12, pp. 3182–3186, Dec. 2020. doi: 10.1109/TCSII.2020.2976955
    [6]
    S. Jain and Y. V. Hote, “Design of improved nonlinear active disturbance rejection controller for hybrid microgrid with communication delay,” IEEE Trans. Sustain. Energy, vol. 13, no. 2, pp. 1101–1111, Apr. 2022. doi: 10.1109/TSTE.2022.3151834
    [7]
    G. Gonzalez, M. Balakuntala, M. Agarwal, T. Low, B. Knoth, A. W. Kirkpatrick, J. McKee, G. Hager, V. Aggarwal, Y. Xue, R. Voyles, and J. Wachs, “ASAP: A semi-autonomous precise system for telesurgery during communication delays,” IEEE Trans. Med. Rob. Bionics, vol. 5, no. 1, pp. 66–78, Feb. 2023. doi: 10.1109/TMRB.2023.3239674
    [8]
    X. Yang, J. Yan, C. Hua, and X. Guan, “Position measurement based slave torque feedback control for teleoperation systems with time-varying communication delays,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 388–402, Feb. 2023. doi: 10.1109/JAS.2022.106076
    [9]
    J. Du, J. Li, and F. L. Lewis, “Distributed 3-D time-varying formation control of underactuated AUVs with communication delays based on data-driven state predictor,” IEEE Trans. Ind. Inform., vol. 19, no. 5, pp. 6963–6971, May 2023. doi: 10.1109/TII.2022.3194632
    [10]
    Y. Chen and G. Chen, “Stability analysis of systems with timevarying delay via a novel lyapunov functional,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1068–1073, Jul. 2019. doi: 10.1109/JAS.2019.1911597
    [11]
    Q. Wu, L. Yu, Y.-W. Wang, and W.-A. Zhang, “LESO-based position synchronization control for networked multi-axis servo systems with time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1116–1123, Jul. 2020. doi: 10.1109/JAS.2020.1003264
    [12]
    Y. Wang, X. Li, and S. Song, “Input-to-state stabilization of nonlinear impulsive delayed systems: An observer-based control approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1273–1283, Jul. 2022. doi: 10.1109/JAS.2022.105422
    [13]
    J. E. Normey-Rico and E. F. Camacho, Control of Dead-Time Processes. London, UK: Springer, 2007.
    [14]
    A. S. Rao, V. S. R. Rao, and M. Chidambaram, “Direct synthesis-based controller design for integrating processes with time delay,” J. Franklin Inst., vol. 346, no. 1, pp. 38–56, Feb. 2009. doi: 10.1016/j.jfranklin.2008.06.004
    [15]
    Z. Artstein, “Linear systems with delayed controls: A reduction,” IEEE Trans. Autom. Control, vol. 27, no. 4, pp. 869–879, Aug. 1982. doi: 10.1109/TAC.1982.1103023
    [16]
    A. Manitius and A. Olbrot, “Finite spectrum assignment problem for systems with delays,” IEEE Trans. Autom. Control, vol. 24, no. 4, pp. 541–552, Aug. 1979. doi: 10.1109/TAC.1979.1102124
    [17]
    Y. Deng, V. Léchappé, C. Zhang, E. Moulay, D. Du, F. Plestan, and Q.-L. Han, “Designing discrete predictor-based controllers for networked control systems with time-varying delays: Application to a visual servo inverted pendulum system,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1763–1777, Oct. 2022. doi: 10.1109/JAS.2021.1004249
    [18]
    Q. Liu, “Pseudo-predictor feedback control for multiagent systems with both state and input delays,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1827–1836, Nov. 2021. doi: 10.1109/JAS.2021.1004180
    [19]
    O. J. M. Smith, “A controller to overcome dead time,” ISA J., vol. 6, no. 2, pp. 28–33, 1959.
    [20]
    T. Cui, Y. Shen, B. Zhang, J. Xu, S. Xiong, K. Zhang, and L. Liang, “PMUs-based voltage control of isolated power systems with high penetration of wind power,” IEEE Trans. Sustainable Energy, vol. 9, no. 3, pp. 1198–1211, Jul. 2018. doi: 10.1109/TSTE.2017.2776255
    [21]
    D. H. Shah and D. M. Patel, “Design of sliding mode control for quadruple-tank MIMO process with time delay compensation,” J. Process Control, vol. 76, pp. 46–61, Apr. 2019. doi: 10.1016/j.jprocont.2019.01.006
    [22]
    R. Wang, Q. Sun, D. Ma, and Z. Liu, “The small-signal stability analysis of the droop-controlled converter in electromagnetic timescale,” IEEE Trans. Sustainable Energy, vol. 10, no. 3, pp. 1459–1469, Jul. 2019. doi: 10.1109/TSTE.2019.2894633
    [23]
    V. Hanta and A. Procházka, “Rational approximation of time delay,” Inst. Chem. Technol. Prague. Dep. Comput. Control Eng. Technická, vol. 5, no. 166, p. 28, Oct. 2009.
    [24]
    H. Min, S. Xu, Y. Li, and Z. Zhang, “Adaptive stabilization of uncertain nonlinear systems under output constraint,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 6, pp. 3957–3966, Jun. 2022. doi: 10.1109/TSMC.2021.3081630
    [25]
    Y. Wang, J. Zhang, H. Zhang, and X. Xie, “Adaptive fuzzy output-constrained control for nonlinear stochastic systems with input delay and unknown control coefficients,” IEEE Trans. Cybern., vol. 51, no. 11, pp. 5279–5290, Nov. 2021. doi: 10.1109/TCYB.2020.3034146
    [26]
    Q. Zhang and D. He, “Disturbance-observer-based adaptive fuzzy control for strict-feedback switched nonlinear systems with input delay,” IEEE Trans. Fuzzy Syst., vol. 29, no. 7, pp. 1942–1952, Jul. 2021. doi: 10.1109/TFUZZ.2020.2989265
    [27]
    M. Vajta, “Some remarks on Pade-approximations,” in Proc. 3rd TEMPUS-INTCOM Symp. Intelligent Systems in Control and Measurements, Veszprém, 2000, pp. 1–6.
    [28]
    Y. Lu and W. Liu, “Adaptive finite-time anti-disturbance fuzzy control for uncertain time-delay nonlinear systems and its application to SVC,” Fuzzy Sets Syst., vol. 472, p. 108699, Nov. 2023. doi: 10.1016/j.fss.2023.108699
    [29]
    X. Yu, G. Wang, L. Jia, and H. Zhang, “Event-triggered practical fixed-time containment control for stochastic multiagent systems with input delay,” IEEE Trans. Fuzzy Syst., vol. 32, no. 5, pp. 2762–2774, May 2024. doi: 10.1109/TFUZZ.2024.3357716
    [30]
    Q. Zheng and Z. Gao, “Predictive active disturbance rejection control for processes with time delay,” ISA Trans., vol. 53, no. 4, pp. 873–881, Jul. 2014. doi: 10.1016/j.isatra.2013.09.021
    [31]
    P. Li, L. Wang, G. Zhu, and M. Zhang, “Predictive active disturbance rejection control for servo systems with communication delays via sliding mode approach,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12679–12688, Dec. 2021. doi: 10.1109/TIE.2020.3039203
    [32]
    T. Liu, S. Hao, D. Li, W.-H. Chen, and Q.-G. Wang, “Predictor-based disturbance rejection control for sampled systems with input delay,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 772–780, Mar. 2019. doi: 10.1109/TCST.2017.2781651
    [33]
    S. Zhao and Z. Gao, “Modified active disturbance rejection control for time-delay systems,” ISA Trans., vol. 53, no. 4, pp. 882–888, Jul. 2014. doi: 10.1016/j.isatra.2013.09.013
    [34]
    C. Fu and W. Tan, “Control of unstable processes with time delays via ADRC,” ISA Trans., vol. 71, pp. 530–541, Nov. 2017. doi: 10.1016/j.isatra.2017.09.002
    [35]
    L. A. Castañeda, A. Luviano-Juárez, G. Ochoa-Ortega, and I. Chairez, “Tracking control of uncertain time delay systems: An ADRC approach,” Control Eng. Pract., vol. 78, pp. 97–104, Sep. 2018. doi: 10.1016/j.conengprac.2018.06.015
    [36]
    J. Sun, X. Liu, J. Yang, Z. Zeng, and S. Li, “Predictor-based extended state observer for disturbance rejection control of multirate systems with measurement delay,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 3003–3012, Mar. 2023. doi: 10.1109/TIE.2022.3172756
    [37]
    J. Sun and Z. Zeng, “Disturbance rejection control for networked control systems using subpredictor-based extended state observer,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 6, pp. 3629–3639, Jun. 2023. doi: 10.1109/TSMC.2022.3230045
    [38]
    P. Li, G. Zhu, and M. Zhang, “Linear active disturbance rejection control for servo motor systems with input delay via internal model control rules,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1077–1086, Feb. 2021. doi: 10.1109/TIE.2020.2970617
    [39]
    S. E. Talole, J. P. Kolhe, and S. B. Phadke, “Extended-state-observer-based control of flexible-joint system with experimental validation,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1411–1419, Apr. 2010. doi: 10.1109/TIE.2009.2029528
    [40]
    D. Shah, A. Shah, and A. Mehta, “Higher order networked sliding mode controller for heat exchanger connected via data communication network,” Eur. J. Control, vol. 58, pp. 301–314, Mar. 2021. doi: 10.1016/j.ejcon.2020.07.011
    [41]
    M. A. Khanesar, O. Kaynak, S. Yin, and H. Gao, “Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay,” IEEE Trans. Fuzzy Syst., vol. 23, no. 1, pp. 205–214, Feb. 2015. doi: 10.1109/TFUZZ.2014.2362549
    [42]
    C. Wu, J. Liu, X. Jing, H. Li, and L. Wu, “Adaptive fuzzy control for nonlinear networked control systems,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 47, no. 8, pp. 2420–2430, Aug. 2017. doi: 10.1109/TSMC.2017.2678760
    [43]
    W. Shen and J. Pan, “Angle tracking control of integrated hydraulic transformer inner loop servo system,” ISA Trans., vol. 134, pp. 312–321, Mar. 2023. doi: 10.1016/j.isatra.2022.09.003
    [44]
    J. Song, Y. Chen, Y. Liu, and L. Zhang, “Fixed-time fuzzy adaptive fault-tolerant control for strict-feedback nonlinear systems with input delay,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 11, pp. 6999–7010, Nov. 2023. doi: 10.1109/TSMC.2023.3285220
    [45]
    N. P. Nguyen, H. Oh, and J. Moon, “Finite-time continuous nonsingular terminal modified adaptive-gain super-twisting control: Application to a 2-DOF planar robot manipulator system,” IEEE Trans. Cybern., vol. 54, no. 5, pp. 2838–2851, May 2024. doi: 10.1109/TCYB.2022.3226957
    [46]
    L. Wu, J. Liu, S. Vazquez, and S. K. Mazumder, “Sliding mode control in power converters and drives: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 392–406, Mar. 2022. doi: 10.1109/JAS.2021.1004380
    [47]
    Y. Hu, H. Wang, S. He, J. Zheng, Z. Ping, K. Shao, Z. Cao, and Z. Man, “Adaptive tracking control of an electronic throttle valve based on recursive terminal sliding mode,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 251–262, Jan. 2021. doi: 10.1109/TVT.2020.3045778
    [48]
    B. Tang, W. Lu, B. Yan, K. Lu, J. Feng, and L. Guo, “A novel position speed integrated sliding mode variable structure controller for position control of PMSM,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 12621–12631, Dec. 2022. doi: 10.1109/TIE.2021.3137587
    [49]
    Y. Feng, M. Zhou, Q.-L. Han, F. Han, Z. Cao, and S. Ding, “Integral-type sliding-mode control for a class of mechatronic systems with gain adaptation,” IEEE Trans. Ind. Inform., vol. 16, no. 8, pp. 5357–5368, Aug. 2020. doi: 10.1109/TII.2019.2954550
    [50]
    R. A. Metri and B. A. Rajpathak, “Computation of control law for state transfer problem in efficient way for a single input,” IEEE Trans. Ind. Appl., vol. 58, no. 3, pp. 4098–4108, May-Jun. 2022. doi: 10.1109/TIA.2022.3159502
    [51]
    Y.-W. Wang, W.-A. Zhang, and L. Yu, “GESO-based position synchronization control of networked multiaxis motion system,” IEEE Trans. Ind. Inform., vol. 16, no. 1, pp. 248–257, Jan. 2020. doi: 10.1109/TII.2019.2915321
    [52]
    H. K. Khalil, Nonlinear Systems. 3rd ed. Upper Saddle River, USA: Prentice Hall, 2002.
    [53]
    A. A. Godbole, J. P. Kolhe, and S. E. Talole, “Performance analysis of generalized extended state observer in tackling sinusoidal disturbances,” IEEE Trans. Control Syst. Technol., vol. 21, no. 6, pp. 2212–2223, Nov. 2013. doi: 10.1109/TCST.2012.2231512

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (65) PDF downloads(26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return