A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Q. Wei, S. Jiao, Q. Dong, and F.-Y. Wang, “Event-triggered robust parallel optimal consensus control for multiagent systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 40–53, Jan. 2025. doi: 10.1109/JAS.2024.124773
Citation: Q. Wei, S. Jiao, Q. Dong, and F.-Y. Wang, “Event-triggered robust parallel optimal consensus control for multiagent systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 40–53, Jan. 2025. doi: 10.1109/JAS.2024.124773

Event-Triggered Robust Parallel Optimal Consensus Control for Multiagent Systems

doi: 10.1109/JAS.2024.124773
Funds:  This work was supported in part by the National Key Research and Development Program of China (2021YFE0206100), the National Natural Science Foundation of China (62425310, 62073321), the National Defense Basic Scientific Research Program (JCKY2019203C029, JCKY2020130C025), and the Science and Technology Development Fund, Macau SAR (FDCT-22-009-MISE, 0060/2021/A2, 0015/2020/AMJ)
More Information
  • This paper highlights the utilization of parallel control and adaptive dynamic programming (ADP) for event-triggered robust parallel optimal consensus control (ETRPOC) of uncertain nonlinear continuous-time multiagent systems (MASs). First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique’s introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an event-triggered mechanism is adopted to save communication resources while ensuring the system’s stability. The coupled Hamilton-Jacobi (HJ) equation’s solution is approximated using a critic neural network (NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded (UUB). Finally, numerical simulations demonstrate the effectiveness of the developed ETRPOC method.

     

  • loading
  • [1]
    J. Wang, Y. Hong, J. Wang, J. Xu, Y. Tang, Q.-L. Han, and J. Kurths, “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 763–783, May 2022. doi: 10.1109/JAS.2022.105506
    [2]
    J. Liu, Y. Wu, M. Sun, and C. Sun, “Fixed-time cooperative tracking for delayed disturbed multi-agent systems under dynamic event-triggered control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 930–933, May 2022. doi: 10.1109/JAS.2022.105503
    [3]
    L. Wang, D. Zhu, W. Pang, and C. Luo, “A novel obstacle avoidance consensus control for multi-AUV formation system,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1304–1318, May 2023. doi: 10.1109/JAS.2023.123201
    [4]
    S. He, X. Liu, P. Lu, H. Liu, and C. Du, “Leader-follower finite-time consensus of multiagent systems with nonlinear dynamics by intermittent protocol,” J. Frankl. Inst., vol. 359, no. 6, pp. 2646–2662, Apr. 2022. doi: 10.1016/j.jfranklin.2022.01.031
    [5]
    S. Jiao, Q. Wei, and F.-Y. Wang, “A novel parallel control method for optimal consensus of nonlinear multiagent systems,” IEEE Trans. Cybern., vol. 54, no. 10, pp. 5912−5925, Oct. 2024.
    [6]
    Y. Lv, Z. Li, and Z. Duan, “Distributed PI control for consensus of heterogeneous multiagent systems over directed graphs,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 4, pp. 1602–1609, Apr. 2020. doi: 10.1109/TSMC.2018.2792472
    [7]
    D. Qi, J. Hu, X. Liang, J. Zhang, and Z. Zhang, “Research on consensus of multi-agent systems with and without input saturation constraints,” J. Syst. Eng. Electron., vol. 32, no. 4, pp. 947–955, Aug. 2021. doi: 10.23919/JSEE.2021.000081
    [8]
    K. Hengster-Movric, K. You, F. L. Lewis, and L. Xie, “Synchronization of discrete-time multi-agent systems on graphs using Riccati design,” Automatica, vol. 49, no. 2, pp. 414–423, Feb. 2013. doi: 10.1016/j.automatica.2012.11.038
    [9]
    T. Feng, J. Zhang, Y. Tong, and H. Zhang, “Consensusability and global optimality of discrete-time linear multiagent systems,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8227–8238, Aug. 2022. doi: 10.1109/TCYB.2021.3049910
    [10]
    X. Zhang, L. Liu, and G. Feng, “Leader-follower consensus of time-varying nonlinear multi-agent systems,” Automatica, vol. 52, pp. 8–14, Feb. 2015. doi: 10.1016/j.automatica.2014.10.127
    [11]
    C. Wang, X. Wang, and H. Ji, “A continuous leader-following consensus control strategy for a class of uncertain multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 187–192, Apr. 2014. doi: 10.1109/JAS.2014.7004549
    [12]
    H. L. Trentelman, K. Takaba, and N. Monshizadeh, “Robust synchronization of uncertain linear multi-agent systems,” IEEE Trans. Autom. Control, vol. 58, no. 6, pp. 1511–1523, Jun. 2013. doi: 10.1109/TAC.2013.2239011
    [13]
    X. Wang, Y. Hong, J. Huang, and Z.-P. Jiang, “A distributed control approach to a robust output regulation problem for multi-agent linear systems,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2891–2895, Dec. 2010. doi: 10.1109/TAC.2010.2076250
    [14]
    Y. Su, Y. Hong, and J. Huang, “A general result on the robust cooperative output regulation for linear uncertain multi-agent systems,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1275–1279, Dec. 2013. doi: 10.1109/TAC.2012.2229837
    [15]
    P. Yu, K. Liu, X. Liu, X. Li, M. Wu, and J. She, “Robust consensus tracking control of uncertain multi-agent systems with local disturbance rejection,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 427–438, Feb. 2023. doi: 10.1109/JAS.2023.123231
    [16]
    S. Khankalantary, I. Izadi, and F. Sheikholeslam, “Robust ADP-based solution of a class of nonlinear multi-agent systems with input saturation and collision avoidance constraints,” ISA Trans., vol. 107, pp. 52–62, Dec. 2020. doi: 10.1016/j.isatra.2020.07.029
    [17]
    Y. Guo and G. Chen, “Robust near-optimal coordination in uncertain multiagent networks with motion constraints,” IEEE Trans. Cybern., vol. 53, no. 5, pp. 2841–2851, May 2023. doi: 10.1109/TCYB.2021.3125318
    [18]
    Z. Zhang, S. Zhang, H. Li, and W. Yan, “Cooperative robust optimal control of uncertain multi-agent systems,” J. Frankl. Inst., vol. 357, no. 14, pp. 9467–9483, Sept. 2020. doi: 10.1016/j.jfranklin.2020.07.021
    [19]
    G. Guo and R. Zhang, “Lyapunov redesign-based optimal consensus control for multi-agent systems with uncertain dynamics,” IEEE Trans. Circuits Syst. Ⅱ: Exp. Briefs, vol. 69, no. 6, pp. 2902–2906, Jun. 2022. doi: 10.1109/TCSII.2022.3149911
    [20]
    M. A. Khalid, M. Rehan, F. Tahir, and M. Hussain, “Robust leader-following consensus control of one-sided Lipschitz multi-agent systems over heterogeneous matching uncertainties,” Results in Control and Optimization, vol. 8, p. 100151, Sept. 2022. doi: 10.1016/j.rico.2022.100151
    [21]
    F.-Y. Wang, “Parallel systen methods for management and control of complex systems,” Control and Decision, vol. 19, no. 5, pp. 485–489, Jan. 2004.
    [22]
    F.-Y. Wang, “Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, Sept. 2010. doi: 10.1109/TITS.2010.2060218
    [23]
    R. Song, L. Liu, and B. Hu, “Aperiodic sampling artificial-actual H optimal control for interconnected constrained systems,” IEEE Trans. Autom. Sci. Eng., pp. 1–11, Oct. 2023.
    [24]
    F.-Y. Wang, N.-N. Zheng, D. Cao, C. M. Martinez, L. Li, and T. Liu, “Parallel driving in CPSS: A unified approach for transport automation and vehicle intelligence,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 577–587, Sept. 2017. doi: 10.1109/JAS.2017.7510598
    [25]
    W. Zhang, K. Wang, Y. Liu, Y. Lu, and F.-Y. Wang, “A parallel vision approach to scene-specific pedestrian detection,” Neurocomputing, vol. 394, pp. 114–126, Jun. 2020. doi: 10.1016/j.neucom.2019.03.095
    [26]
    D. Li and J. Dong, “Performance-constrained fault-tolerant DSC based on reinforcement learning for nonlinear systems with uncertain parameters,” Appl. Math. Comput., vol. 443, p. 127759, Apr. 2023.
    [27]
    S. Jiao, Q. Wei, and J. Xiao, “Parallel control with event-based adaptive critic implementation for robust optimal tracking of uncertain nonlinear systems,” IEEE Trans. Autom. Sci. Eng., pp. 1–14, Jul. 2024.
    [28]
    Q. Wei, S. Jiao, F.-Y. Wang, and Q. Dong, “Robust optimal parallel tracking control based on adaptive dynamic programming,” IEEE Trans. Cybern., vol. 54, no. 7, pp. 4308–4321, Jul. 2024. doi: 10.1109/TCYB.2023.3312543
    [29]
    Q. Wei and T. Li, “Constrained-cost adaptive dynamic programming for optimal control of discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 3251–3264, Mar. 2024. doi: 10.1109/TNNLS.2023.3237586
    [30]
    R. Song, G. Yang, and F. L. Lewis, “Nearly optimal control for mixed zero-sum game based on off-policy integral reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 2, pp. 2793–2804, Feb. 2024. doi: 10.1109/TNNLS.2022.3191847
    [31]
    D. P. Bertsekas, “Value and policy iterations in optimal control and adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 500–509, Mar. 2017. doi: 10.1109/TNNLS.2015.2503980
    [32]
    Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local value iteration adaptive dynamic programming: Convergence analysis,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 6, pp. 875–891, Jun. 2018. doi: 10.1109/TSMC.2016.2623766
    [33]
    Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 840–853, Mar. 2016. doi: 10.1109/TCYB.2015.2492242
    [34]
    Q. Wei, H. Li, X. Yang, and H. He, “Continuous-time distributed policy iteration for multicontroller nonlinear systems,” IEEE Trans. Cybern., vol. 51, no. 5, pp. 2372–2383, May 2021. doi: 10.1109/TCYB.2020.2979614
    [35]
    Q. Wei, D. Liu, Q. Lin, and R. Song, “Discrete-time optimal control via local policy iteration adaptive dynamic programming,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3367–3379, Oct. 2017. doi: 10.1109/TCYB.2016.2586082
    [36]
    R. Song, L. Liu, L. Xia, and F. L. Lewis, “Online optimal event-triggered H control for nonlinear systems with constrained state and input,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 1, pp. 131–141, Jan. 2023. doi: 10.1109/TSMC.2022.3173275
    [37]
    J. Liang, X. Bu, L. Cui, and Z. Hou, “Event-triggered asymmetric bipartite consensus tracking for nonlinear multi-agent systems based on model-free adaptive control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 662–672, Mar. 2023. doi: 10.1109/JAS.2022.106070
    [38]
    R. R. Nair, L. Behera, and S. Kumar, “Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 39–47, Jan. 2019.
    [39]
    W. Zhao, W. Yu, and H. Zhang, “Event-triggered optimal consensus tracking control for multi-agent systems with unknown internal states and disturbances,” Nonlinear Analysis: Hybrid Systems, vol. 33, pp. 227–248, Aug. 2019. doi: 10.1016/j.nahs.2019.03.003
    [40]
    M. Tan, Z. Liu, C. L. P. Chen, Y. Zhang, and Z. Wu, “Optimized adaptive consensus tracking control for uncertain nonlinear multiagent systems using a new event-triggered communication mechanism,” Inf. Sci., vol. 605, pp. 301–316, Aug. 2022. doi: 10.1016/j.ins.2022.05.030
    [41]
    J. Lu, Q. Wei, Z. Wang, T. Zhou, and F.-Y. Wang, “Event-triggered optimal control for discrete-time multi-player non-zero-sum games using parallel control,” Inf. Sci., vol. 584, pp. 519–535, Jan. 2022. doi: 10.1016/j.ins.2021.10.073
    [42]
    J. Lu, Q. Wei, T. Zhou, Z. Wang, and F.-Y. Wang, “Event-triggered near-optimal control for unknown discrete-time nonlinear systems using parallel control,” IEEE Trans. Cybern., vol. 53, no. 3, pp. 1890–1904, Mar. 2023. doi: 10.1109/TCYB.2022.3164977
    [43]
    P. Petersen, M. Raslan, and F. Voigtlaender, “Topological properties of the set of functions generated by neural networks of fixed size,” Found. Comput. Math., vol. 21, no. 2, pp. 375–444, May 2021. doi: 10.1007/s10208-020-09461-0
    [44]
    G. Wen, C. L. P. Chen, and S. S. Ge, “Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions,” IEEE Trans. Cybern., vol. 51, no. 9, pp. 4567–4580, Sept. 2021. doi: 10.1109/TCYB.2020.3002108
    [45]
    F. Lin, Robust Control Design: An Optimal Control Approach. Newy York: John Wiley/RSP, 2007.
    [46]
    B. Li, S. Wen, Z. Yan, G. Wen, and T. Huang, “A survey on the control lyapunov function and control barrier function for nonlinear-affine control systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 584–602, Mar. 2023. doi: 10.1109/JAS.2023.123075
    [47]
    K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem,” Automatica (Oxford), vol. 46, no. 5, pp. 878–888, May 2010. doi: 10.1016/j.automatica.2010.02.018
    [48]
    R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation,” Automatica, vol. 33, no. 12, pp. 2159–2177, Dec. 1997. doi: 10.1016/S0005-1098(97)00128-3
    [49]
    H. K. Khalil, Nonlinear Systems, ser. 3rd ed, New Jersey: Prentice Hall, 2002.
    [50]
    J. Wang, Z. Zhang, B. Tian, and Q. Zong, “Event-based robust optimal consensus control for nonlinear multiagent system with local adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 1073–1086, Jan. 2024. doi: 10.1109/TNNLS.2022.3180054

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (53) PDF downloads(28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return