Citation: | Q. Wei, S. Jiao, Q. Dong, and F.-Y. Wang, “Event-triggered robust parallel optimal consensus control for multiagent systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 40–53, Jan. 2025. doi: 10.1109/JAS.2024.124773 |
[1] |
J. Wang, Y. Hong, J. Wang, J. Xu, Y. Tang, Q.-L. Han, and J. Kurths, “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 763–783, May 2022. doi: 10.1109/JAS.2022.105506
|
[2] |
J. Liu, Y. Wu, M. Sun, and C. Sun, “Fixed-time cooperative tracking for delayed disturbed multi-agent systems under dynamic event-triggered control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 930–933, May 2022. doi: 10.1109/JAS.2022.105503
|
[3] |
L. Wang, D. Zhu, W. Pang, and C. Luo, “A novel obstacle avoidance consensus control for multi-AUV formation system,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1304–1318, May 2023. doi: 10.1109/JAS.2023.123201
|
[4] |
S. He, X. Liu, P. Lu, H. Liu, and C. Du, “Leader-follower finite-time consensus of multiagent systems with nonlinear dynamics by intermittent protocol,” J. Frankl. Inst., vol. 359, no. 6, pp. 2646–2662, Apr. 2022. doi: 10.1016/j.jfranklin.2022.01.031
|
[5] |
S. Jiao, Q. Wei, and F.-Y. Wang, “A novel parallel control method for optimal consensus of nonlinear multiagent systems,” IEEE Trans. Cybern., vol. 54, no. 10, pp. 5912−5925, Oct. 2024.
|
[6] |
Y. Lv, Z. Li, and Z. Duan, “Distributed PI control for consensus of heterogeneous multiagent systems over directed graphs,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 4, pp. 1602–1609, Apr. 2020. doi: 10.1109/TSMC.2018.2792472
|
[7] |
D. Qi, J. Hu, X. Liang, J. Zhang, and Z. Zhang, “Research on consensus of multi-agent systems with and without input saturation constraints,” J. Syst. Eng. Electron., vol. 32, no. 4, pp. 947–955, Aug. 2021. doi: 10.23919/JSEE.2021.000081
|
[8] |
K. Hengster-Movric, K. You, F. L. Lewis, and L. Xie, “Synchronization of discrete-time multi-agent systems on graphs using Riccati design,” Automatica, vol. 49, no. 2, pp. 414–423, Feb. 2013. doi: 10.1016/j.automatica.2012.11.038
|
[9] |
T. Feng, J. Zhang, Y. Tong, and H. Zhang, “Consensusability and global optimality of discrete-time linear multiagent systems,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8227–8238, Aug. 2022. doi: 10.1109/TCYB.2021.3049910
|
[10] |
X. Zhang, L. Liu, and G. Feng, “Leader-follower consensus of time-varying nonlinear multi-agent systems,” Automatica, vol. 52, pp. 8–14, Feb. 2015. doi: 10.1016/j.automatica.2014.10.127
|
[11] |
C. Wang, X. Wang, and H. Ji, “A continuous leader-following consensus control strategy for a class of uncertain multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 187–192, Apr. 2014. doi: 10.1109/JAS.2014.7004549
|
[12] |
H. L. Trentelman, K. Takaba, and N. Monshizadeh, “Robust synchronization of uncertain linear multi-agent systems,” IEEE Trans. Autom. Control, vol. 58, no. 6, pp. 1511–1523, Jun. 2013. doi: 10.1109/TAC.2013.2239011
|
[13] |
X. Wang, Y. Hong, J. Huang, and Z.-P. Jiang, “A distributed control approach to a robust output regulation problem for multi-agent linear systems,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2891–2895, Dec. 2010. doi: 10.1109/TAC.2010.2076250
|
[14] |
Y. Su, Y. Hong, and J. Huang, “A general result on the robust cooperative output regulation for linear uncertain multi-agent systems,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1275–1279, Dec. 2013. doi: 10.1109/TAC.2012.2229837
|
[15] |
P. Yu, K. Liu, X. Liu, X. Li, M. Wu, and J. She, “Robust consensus tracking control of uncertain multi-agent systems with local disturbance rejection,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 427–438, Feb. 2023. doi: 10.1109/JAS.2023.123231
|
[16] |
S. Khankalantary, I. Izadi, and F. Sheikholeslam, “Robust ADP-based solution of a class of nonlinear multi-agent systems with input saturation and collision avoidance constraints,” ISA Trans., vol. 107, pp. 52–62, Dec. 2020. doi: 10.1016/j.isatra.2020.07.029
|
[17] |
Y. Guo and G. Chen, “Robust near-optimal coordination in uncertain multiagent networks with motion constraints,” IEEE Trans. Cybern., vol. 53, no. 5, pp. 2841–2851, May 2023. doi: 10.1109/TCYB.2021.3125318
|
[18] |
Z. Zhang, S. Zhang, H. Li, and W. Yan, “Cooperative robust optimal control of uncertain multi-agent systems,” J. Frankl. Inst., vol. 357, no. 14, pp. 9467–9483, Sept. 2020. doi: 10.1016/j.jfranklin.2020.07.021
|
[19] |
G. Guo and R. Zhang, “Lyapunov redesign-based optimal consensus control for multi-agent systems with uncertain dynamics,” IEEE Trans. Circuits Syst. Ⅱ: Exp. Briefs, vol. 69, no. 6, pp. 2902–2906, Jun. 2022. doi: 10.1109/TCSII.2022.3149911
|
[20] |
M. A. Khalid, M. Rehan, F. Tahir, and M. Hussain, “Robust leader-following consensus control of one-sided Lipschitz multi-agent systems over heterogeneous matching uncertainties,” Results in Control and Optimization, vol. 8, p. 100151, Sept. 2022. doi: 10.1016/j.rico.2022.100151
|
[21] |
F.-Y. Wang, “Parallel systen methods for management and control of complex systems,” Control and Decision, vol. 19, no. 5, pp. 485–489, Jan. 2004.
|
[22] |
F.-Y. Wang, “Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, Sept. 2010. doi: 10.1109/TITS.2010.2060218
|
[23] |
R. Song, L. Liu, and B. Hu, “Aperiodic sampling artificial-actual H∞ optimal control for interconnected constrained systems,” IEEE Trans. Autom. Sci. Eng., pp. 1–11, Oct. 2023.
|
[24] |
F.-Y. Wang, N.-N. Zheng, D. Cao, C. M. Martinez, L. Li, and T. Liu, “Parallel driving in CPSS: A unified approach for transport automation and vehicle intelligence,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 577–587, Sept. 2017. doi: 10.1109/JAS.2017.7510598
|
[25] |
W. Zhang, K. Wang, Y. Liu, Y. Lu, and F.-Y. Wang, “A parallel vision approach to scene-specific pedestrian detection,” Neurocomputing, vol. 394, pp. 114–126, Jun. 2020. doi: 10.1016/j.neucom.2019.03.095
|
[26] |
D. Li and J. Dong, “Performance-constrained fault-tolerant DSC based on reinforcement learning for nonlinear systems with uncertain parameters,” Appl. Math. Comput., vol. 443, p. 127759, Apr. 2023.
|
[27] |
S. Jiao, Q. Wei, and J. Xiao, “Parallel control with event-based adaptive critic implementation for robust optimal tracking of uncertain nonlinear systems,” IEEE Trans. Autom. Sci. Eng., pp. 1–14, Jul. 2024.
|
[28] |
Q. Wei, S. Jiao, F.-Y. Wang, and Q. Dong, “Robust optimal parallel tracking control based on adaptive dynamic programming,” IEEE Trans. Cybern., vol. 54, no. 7, pp. 4308–4321, Jul. 2024. doi: 10.1109/TCYB.2023.3312543
|
[29] |
Q. Wei and T. Li, “Constrained-cost adaptive dynamic programming for optimal control of discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 3251–3264, Mar. 2024. doi: 10.1109/TNNLS.2023.3237586
|
[30] |
R. Song, G. Yang, and F. L. Lewis, “Nearly optimal control for mixed zero-sum game based on off-policy integral reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 2, pp. 2793–2804, Feb. 2024. doi: 10.1109/TNNLS.2022.3191847
|
[31] |
D. P. Bertsekas, “Value and policy iterations in optimal control and adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 500–509, Mar. 2017. doi: 10.1109/TNNLS.2015.2503980
|
[32] |
Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local value iteration adaptive dynamic programming: Convergence analysis,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 6, pp. 875–891, Jun. 2018. doi: 10.1109/TSMC.2016.2623766
|
[33] |
Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 840–853, Mar. 2016. doi: 10.1109/TCYB.2015.2492242
|
[34] |
Q. Wei, H. Li, X. Yang, and H. He, “Continuous-time distributed policy iteration for multicontroller nonlinear systems,” IEEE Trans. Cybern., vol. 51, no. 5, pp. 2372–2383, May 2021. doi: 10.1109/TCYB.2020.2979614
|
[35] |
Q. Wei, D. Liu, Q. Lin, and R. Song, “Discrete-time optimal control via local policy iteration adaptive dynamic programming,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3367–3379, Oct. 2017. doi: 10.1109/TCYB.2016.2586082
|
[36] |
R. Song, L. Liu, L. Xia, and F. L. Lewis, “Online optimal event-triggered H∞ control for nonlinear systems with constrained state and input,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 1, pp. 131–141, Jan. 2023. doi: 10.1109/TSMC.2022.3173275
|
[37] |
J. Liang, X. Bu, L. Cui, and Z. Hou, “Event-triggered asymmetric bipartite consensus tracking for nonlinear multi-agent systems based on model-free adaptive control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 662–672, Mar. 2023. doi: 10.1109/JAS.2022.106070
|
[38] |
R. R. Nair, L. Behera, and S. Kumar, “Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 39–47, Jan. 2019.
|
[39] |
W. Zhao, W. Yu, and H. Zhang, “Event-triggered optimal consensus tracking control for multi-agent systems with unknown internal states and disturbances,” Nonlinear Analysis: Hybrid Systems, vol. 33, pp. 227–248, Aug. 2019. doi: 10.1016/j.nahs.2019.03.003
|
[40] |
M. Tan, Z. Liu, C. L. P. Chen, Y. Zhang, and Z. Wu, “Optimized adaptive consensus tracking control for uncertain nonlinear multiagent systems using a new event-triggered communication mechanism,” Inf. Sci., vol. 605, pp. 301–316, Aug. 2022. doi: 10.1016/j.ins.2022.05.030
|
[41] |
J. Lu, Q. Wei, Z. Wang, T. Zhou, and F.-Y. Wang, “Event-triggered optimal control for discrete-time multi-player non-zero-sum games using parallel control,” Inf. Sci., vol. 584, pp. 519–535, Jan. 2022. doi: 10.1016/j.ins.2021.10.073
|
[42] |
J. Lu, Q. Wei, T. Zhou, Z. Wang, and F.-Y. Wang, “Event-triggered near-optimal control for unknown discrete-time nonlinear systems using parallel control,” IEEE Trans. Cybern., vol. 53, no. 3, pp. 1890–1904, Mar. 2023. doi: 10.1109/TCYB.2022.3164977
|
[43] |
P. Petersen, M. Raslan, and F. Voigtlaender, “Topological properties of the set of functions generated by neural networks of fixed size,” Found. Comput. Math., vol. 21, no. 2, pp. 375–444, May 2021. doi: 10.1007/s10208-020-09461-0
|
[44] |
G. Wen, C. L. P. Chen, and S. S. Ge, “Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions,” IEEE Trans. Cybern., vol. 51, no. 9, pp. 4567–4580, Sept. 2021. doi: 10.1109/TCYB.2020.3002108
|
[45] |
F. Lin, Robust Control Design: An Optimal Control Approach. Newy York: John Wiley/RSP, 2007.
|
[46] |
B. Li, S. Wen, Z. Yan, G. Wen, and T. Huang, “A survey on the control lyapunov function and control barrier function for nonlinear-affine control systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 584–602, Mar. 2023. doi: 10.1109/JAS.2023.123075
|
[47] |
K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem,” Automatica (Oxford), vol. 46, no. 5, pp. 878–888, May 2010. doi: 10.1016/j.automatica.2010.02.018
|
[48] |
R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation,” Automatica, vol. 33, no. 12, pp. 2159–2177, Dec. 1997. doi: 10.1016/S0005-1098(97)00128-3
|
[49] |
H. K. Khalil, Nonlinear Systems, ser. 3rd ed, New Jersey: Prentice Hall, 2002.
|
[50] |
J. Wang, Z. Zhang, B. Tian, and Q. Zong, “Event-based robust optimal consensus control for nonlinear multiagent system with local adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 1073–1086, Jan. 2024. doi: 10.1109/TNNLS.2022.3180054
|