Citation: | Q. Peng, K. Liu, J. Wu, and A. Khajepour, “Efficient knowledge-guided self-evolving intelligent behavioral control for autonomous vehicles,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.124746 |
[1] |
H. Ding, Y. Tang, Q. Wu, B. Wang, C. Chen, and Z. Wang, “Magnetic field-based reward shaping for goal-conditioned reinforcement learning,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 12, pp. 2233–2247, 2023. doi: 10.1109/JAS.2023.123477
|
[2] |
Z. Cao, K. Jiang, W. Zhou, S. Xu, H. Peng, and D. Yang, “Continuous improvement of self-driving cars using dynamic confidence-aware reinforcement learning,” Nature Machine Intelligence, vol. 5, no. 2, pp. 145–158, 2023. doi: 10.1038/s42256-023-00610-y
|
[3] |
C. Diehl, T. S. Sievernich, M. Krȹger, F. Hoffmann, and T. Bertram, “Uncertainty-aware model-based offline reinforcement learning for automated driving,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 1167–1174, 2023. doi: 10.1109/LRA.2023.3236579
|
[4] |
S. Ashwin and R. Naveen Raj, “Deep reinforcement learning for autonomous vehicles: lane keep and overtaking scenarios with collision avoidance,” Int. Journal of Information Technology, vol. 15, no. 7, pp. 3541–3553, 2023. doi: 10.1007/s41870-023-01412-6
|
[5] |
J. Wu, H. Yang, L. Yang, Y. Huang, X. He, and C. Lv, “Human-guided deep reinforcement learning for optimal decision making of autonomous vehicles,” IEEE Trans. Systems, Man, and Cybernetics: Systems, 2024.
|
[6] |
J. Wu, Z. Huang, Z. Hu, and C. Lv, “Toward human-in-the-loop ai: Enhancing deep reinforcement learning via real-time human guidance for autonomous driving,” Engineering, vol. 21, pp. 75–91, 2023. doi: 10.1016/j.eng.2022.05.017
|
[7] |
T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning from demonstrations, ” in Proc. the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
|