IEEE/CAA Journal of Automatica Sinica
Citation: | C. Liu, Q. Gao, W. Wang, and J. Lü, “Distributed cooperative regulation for networked re-entrant manufacturing systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 636–638, Mar. 2025. doi: 10.1109/JAS.2024.124728 |
[1] |
S. Arima, A. Kobayashi, Y.-F. Wang, K. Sakurai, and Y. Monma, “Optimization of re-entrant hybrid flows with multiple queue time constraints in batch processes of semiconductor manufacturing,” IEEE Trans. Semiconductor Manufacturing, vol. 28, no. 4, pp. 528–544, Nov. 2015. doi: 10.1109/TSM.2015.2478281
|
[2] |
J. Han, M. Cai, Y. Lin, W. Liu, X. Luo, H. Zhang, and M. Zhong, “3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method,” Applied Surface Science, vol. 456, pp. 726–736, 2018. doi: 10.1016/j.apsusc.2018.06.126
|
[3] |
S. Kumar and P. R. Kumar, “Queueing network models in the design and analysis of semiconductor wafer fabs,” IEEE Trans. Robotics and Automation, vol. 17, no. 5, pp. 548–561, Oct. 2001. doi: 10.1109/70.964657
|
[4] |
C. Lin, M. Xu, D. C. Marinescu, F. Ren, and Z. Shan, “A sufficient condition for instability of buffer priority policies in re-entrant lines,” IEEE Trans. Automatic Control, vol. 48, no. 7, pp. 1235–1238, Jul. 2003. doi: 10.1109/TAC.2003.814268
|
[5] |
D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf, and T. Jo, “A continuum model for a re-entrant factory,” Operations Research, vol. 54, pp. 933–950, 2006. doi: 10.1287/opre.1060.0321
|
[6] |
M. Diagne and I. Karafyllis, “Event-triggered boundary control of a continuum model of highly re-entrant manufacturing systems,” Automatica, vol. 134, p. 109902, 2021. doi: 10.1016/j.automatica.2021.109902
|
[7] |
J. Chu, P. Shang, and Z. Wang, “Controllability and stabilization of a conservation law modeling a highly re-entrant manufacturing system,” Nonlinear Analysis, vol. 189, p. 111577, 2019. doi: 10.1016/j.na.2019.111577
|
[8] |
R. Y. Zhong, X. Xua, E. Klotz, and S. T. Newman, “Intelligent manufacturing in the context of Industry 4.0: A review,” Engineering, vol. 3, pp. 616–630, 2017. doi: 10.1016/J.ENG.2017.05.015
|
[9] |
J. Deutscher, “Robust cooperative output regulation for a network of parabolic PDE systems,” IEEE Trans. Autom. Control, vol. 67, no. 1, pp. 451–459, Jan. 2022. doi: 10.1109/TAC.2021.3079352
|
[10] |
M. A. Demetriou, “Adaptation and optimization of synchronization gains in the regulation control of networked distributed parameter systems,” IEEE Trans. Autom. Control, vol. 60, no. 8, pp. 2219–2224, Aug. 2015. doi: 10.1109/TAC.2014.2372907
|
[11] |
A. Das and F. L. Lewis, “Distributed adaptive control for synchronization of unknown nonlinear networked systems,” Automatica, vol. 46, no. 12, pp. 2014–2021, 2010. doi: 10.1016/j.automatica.2010.08.008
|
[12] |
C. Zhang, Q. Gao, M. V. Basin, J. Lü, and H. Liu, “Robust control of multi-line re-entrant manufacturing plants via stochastic continuum models,” IEEE Trans. Automation Science and Engineering, 2023, DOI: 10.1109/TASE.2023.3305308.
|