IEEE/CAA Journal of Automatica Sinica
Citation: | K. Liu, Y. Liu, Q. Peng, N. Cui, and C. Zhang, “Interpretable data-driven learning with fast ultrasonic detection for battery health estimation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 267–269, Jan. 2025. doi: 10.1109/JAS.2024.124722 |
[1] |
Y. Wang, K. Li, and Z. Chen, “Battery full life cycle management and health prognosis based on cloud service and broad learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1540–1542, 2022.
|
[2] |
K. Liu, Z. Wei, C. Zhang, Y. Shang, R. Teodorescu, and Q.-L. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1139–1165, 2022.
|
[3] |
M. Chen, G. Ma, W. Liu, et al., “An overview of data-driven battery health estimation technology for battery management system,” Neurocomputing, vol. 532, no. 1, pp. 152–169, 2023.
|
[4] |
G. Ma, Z. Wang, W. Liu, et al., “Estimating the state of health for lithium-ion batteries: A particle swarm optimization-assisted deep domain adaptation approach,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1530–1543, 2023.
|
[5] |
Q. Xu, M. Wu, E. Khoo, et al., “A hybrid ensemble deep learning approach for early prediction of battery remaining useful life,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 177–187, 2023.
|
[6] |
K. Liu, Q. Peng, R. Teodorescu, and A. M. Foley, “Knowledge-guided data-driven model with transfer concept for battery calendar ageing trajectory prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 272–274, 2023.
|
[7] |
K. Liu, Q. Peng, Y. Liu, N. Cui, and C. Zhang, “Explainable neural network for sensitivity analysis of lithium-ion battery smart production,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 9, pp. 1944–1953, 2024. doi: 10.1109/JAS.2024.124539
|