Citation: | Y. Gao, S. Qiu, M. Liu, L. Zhang, and X. Cao, “Fault warning of satellite momentum wheels with a lightweight transformer improved by FastDTW,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–11, Feb. 2025. doi: 10.1109/JAS.2024.124689 |
[1] |
H. Li, D. Pan, and C. L. P. Chen, “Reliability modeling and life estimation using an expectation maximization based wiener degradation model for momentum wheels,” IEEE Trans. Cybern., vol. 45, no. 5, pp. 969–977, May 2015. doi: 10.1109/TCYB.2014.2341113
|
[2] |
H.-Z. Huang, K. Yu, T. Huang, H. Li, and H.-M. Qian, “Reliability estimation for momentum wheel bearings considering frictional heat,” Eksploatacja i Niezawodność Maint. Reliab., vol. 22, no. 1, pp. 6–14, Mar. 2020.
|
[3] |
T. Jiang, K. Khorasani, and S. Tafazoli, “Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite models,” IEEE Trans. Control Syst. Technol., vol. 16, no. 4, pp. 799–808, Jul. 2008. doi: 10.1109/TCST.2007.906317
|
[4] |
Z. Hao, X. Yue, H. Wen, and C. Liu, “Full-state-constrained non-certainty-equivalent adaptive control for satellite swarm subject to input fault,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 482–495, Mar. 2022. doi: 10.1109/JAS.2021.1004216
|
[5] |
H. D. Mohr, “Real-time on-orbit momentum wheel health monitoring for robust satellite attitude control,” in Proc. IEEE Aerospace Conf. (50100), Big Sky, USA, 2021, pp. 1–7.
|
[6] |
W. Chen and Q. Hu, “Sliding-mode-based attitude tracking control of spacecraft under reaction wheel uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1475–1487, Jun. 2023. doi: 10.1109/JAS.2022.105665
|
[7] |
W. Chen, J. Li, Q. Wang, and K. Han, “Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM,” Measurement, vol. 172, p. 108901, Feb. 2021. doi: 10.1016/j.measurement.2020.108901
|
[8] |
P. Cheng, J. Li, H. Yu, N. Li, Z. Qiu, and S. Wang, “Anomaly detection of satellite momentum wheel based on fast dynamic time warping,” in Proc. Chinese Intelligent Systems Conf.: Volume II, Singapore, Singapore, 2021, pp. 773–783.
|
[9] |
J. Fan and Y. Tang, “An EMD-SVR method for non-stationary time series prediction,” in Proc. Int. Conf. Quality, Reliability, Risk, Maintenance, and Safety Engineering, Chengdu, China, 2013, pp. 1765–1770.
|
[10] |
B. Hou, Z. He, H. Zhou, and J. Wang, “Integrated design and accuracy analysis of star sensor and gyro on the same benchmark for satellite attitude determination system,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1074–1080, Jul. 2019. doi: 10.1109/JAS.2019.1911600
|
[11] |
Z. Cai and W. Zhu, “Feature selection for multi-label classification using neighborhood preservation,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 320–330, Jan. 2018. doi: 10.1109/JAS.2017.7510781
|
[12] |
T. Yairi, N. Takeishi, T. Oda, Y. Nakajima, N. Nishimura, and N. Takata, “A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1384–1401, Jun. 2017. doi: 10.1109/TAES.2017.2671247
|
[13] |
B. Lim and S. Zohren, “Time-series forecasting with deep learning: A survey,” Philos. Trans. A Math. Phys. Eng. Sci., vol. 379, no. 2194, p. 20200209, Apr. 2021.
|
[14] |
Z. Q. Li, L. Ma, and K. Khorasani, “Fault diagnosis of an actuator in the attitude control subsystem of a satellite using neural networks,” in Proc. Int. Joint Conf. Neural Networks, Orlando, USA, 2007, pp. 2658–2663.
|
[15] |
S. Gundawar, N. Kumar, P. Yash, A. K. Singh, M. Deepan, R. Subramani, B. R. Uma, G. Krishnapriya, B. Shivaprakash, and D. Venkataramana, “Multihead self-attention and LSTM for spacecraft telemetry anomaly detection,” in Proc. 11th Int. Conf. Advanced Computing, Msida, Malta, 2022, pp. 463–479.
|
[16] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I, Polosukhin, “Attention is all you need,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA30, 2017, 6000–6010.
|
[17] |
H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proc. 35th AAAI Conf. Artificial Intelligence, vol. 35, no. 12, pp. 11106–11115, 2021.
|
[18] |
M. Cuturi and M. Blondel, “Soft-DTW: A differentiable loss function for time-series,” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 894–903.
|
[19] |
S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580, Oct. 2007. doi: 10.3233/IDA-2007-11508
|
[20] |
Z.-F. Cui, B.-W. Xu, W.-F. Zhang, and J.-L. Xu, “An approximate Markov blanket feature selection algorithm,” Chin. J. Comput., vol. 30, no. 12, pp. 2074–2081, Dec. 2007.
|
[21] |
D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. Mcvean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel associations in large data sets,” Science, vol. 334, no. 6062, pp. 1518–1524, Dec. 2011. doi: 10.1126/science.1205438
|
[22] |
A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Physical Rev. E, vol. 69, no. 6, p. 066138, Jun. 2004. doi: 10.1103/PhysRevE.69.066138
|
[23] |
B. Agarwal and N. Mittal, “Prominent feature extraction for review analysis: An empirical study,” J. Exp. Theor. Artif. Intell., vol. 28, no. 3, pp. 485–498, May 2016. doi: 10.1080/0952813X.2014.977830
|
[24] |
C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos, “Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: Algorithms and empirical evaluation,” J. Mach. Learn. Res., vol. 11, pp. 171–234, Mar. 2010.
|
[25] |
A. Hassan, J. H. Paik, S. Khare, and S. A. Hassan, “PPFS: Predictive permutation feature selection,” arXiv preprint arXiv: 2110.10713, 2021.
|
[26] |
G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,” in Proc. OTM Confederated Int. Conf. the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, Sicily, Italy, pp. 986–996.
|
[27] |
E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 441–451, Mar. 2019. doi: 10.1109/JAS.2019.1911393
|