A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Gao, S. Qiu, M. Liu, L. Zhang, and X. Cao, “Fault warning of satellite momentum wheels with a lightweight transformer improved by FastDTW,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–11, Feb. 2025. doi: 10.1109/JAS.2024.124689
Citation: Y. Gao, S. Qiu, M. Liu, L. Zhang, and X. Cao, “Fault warning of satellite momentum wheels with a lightweight transformer improved by FastDTW,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–11, Feb. 2025. doi: 10.1109/JAS.2024.124689

Fault Warning of Satellite Momentum Wheels With a Lightweight Transformer Improved by FastDTW

doi: 10.1109/JAS.2024.124689
Funds:  This work was supported by the Science Center Program of National Natural Science Foundation of China (62188101), the National Natural Science Foundation of China (61833009, 61690212, 51875119), the Heilongjiang Touyan Team, and the Guangdong Major Project of Basic and Applied Basic Research (2019B030302001)
More Information
  • The momentum wheel assumes a dominant role as an inertial actuator for satellite attitude control systems. Due to the effects of structural aging and external interference, the momentum wheel may experience the gradual emergence of irreversible faults. These fault features will become apparent in the telemetry signal transmitted by the momentum wheel. This paper introduces ADTWformer, a lightweight model for long-term prediction of time series, to analyze the time evolution trend and multi-dimensional data coupling mechanism of satellite momentum wheel faults. Moreover, the incorporation of the approximate Markov blanket with the maximum information coefficient presents a novel methodology for performing correlation analysis, providing significant perspectives from a data-centric standpoint. Ultimately, the creation of an adaptive alarm mechanism allows for the successful attainment of the momentum wheel fault warning by detecting the changes in the health status curves. The analysis methodology outlined in this article has exhibited positive results in identifying instances of satellite momentum wheel failure in two scenarios, thereby showcasing considerable promise for large-scale applications.

     

  • loading
  • [1]
    H. Li, D. Pan, and C. L. P. Chen, “Reliability modeling and life estimation using an expectation maximization based wiener degradation model for momentum wheels,” IEEE Trans. Cybern., vol. 45, no. 5, pp. 969–977, May 2015. doi: 10.1109/TCYB.2014.2341113
    [2]
    H.-Z. Huang, K. Yu, T. Huang, H. Li, and H.-M. Qian, “Reliability estimation for momentum wheel bearings considering frictional heat,” Eksploatacja i Niezawodność Maint. Reliab., vol. 22, no. 1, pp. 6–14, Mar. 2020.
    [3]
    T. Jiang, K. Khorasani, and S. Tafazoli, “Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite models,” IEEE Trans. Control Syst. Technol., vol. 16, no. 4, pp. 799–808, Jul. 2008. doi: 10.1109/TCST.2007.906317
    [4]
    Z. Hao, X. Yue, H. Wen, and C. Liu, “Full-state-constrained non-certainty-equivalent adaptive control for satellite swarm subject to input fault,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 482–495, Mar. 2022. doi: 10.1109/JAS.2021.1004216
    [5]
    H. D. Mohr, “Real-time on-orbit momentum wheel health monitoring for robust satellite attitude control,” in Proc. IEEE Aerospace Conf. (50100), Big Sky, USA, 2021, pp. 1–7.
    [6]
    W. Chen and Q. Hu, “Sliding-mode-based attitude tracking control of spacecraft under reaction wheel uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1475–1487, Jun. 2023. doi: 10.1109/JAS.2022.105665
    [7]
    W. Chen, J. Li, Q. Wang, and K. Han, “Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM,” Measurement, vol. 172, p. 108901, Feb. 2021. doi: 10.1016/j.measurement.2020.108901
    [8]
    P. Cheng, J. Li, H. Yu, N. Li, Z. Qiu, and S. Wang, “Anomaly detection of satellite momentum wheel based on fast dynamic time warping,” in Proc. Chinese Intelligent Systems Conf.: Volume II, Singapore, Singapore, 2021, pp. 773–783.
    [9]
    J. Fan and Y. Tang, “An EMD-SVR method for non-stationary time series prediction,” in Proc. Int. Conf. Quality, Reliability, Risk, Maintenance, and Safety Engineering, Chengdu, China, 2013, pp. 1765–1770.
    [10]
    B. Hou, Z. He, H. Zhou, and J. Wang, “Integrated design and accuracy analysis of star sensor and gyro on the same benchmark for satellite attitude determination system,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1074–1080, Jul. 2019. doi: 10.1109/JAS.2019.1911600
    [11]
    Z. Cai and W. Zhu, “Feature selection for multi-label classification using neighborhood preservation,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 320–330, Jan. 2018. doi: 10.1109/JAS.2017.7510781
    [12]
    T. Yairi, N. Takeishi, T. Oda, Y. Nakajima, N. Nishimura, and N. Takata, “A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1384–1401, Jun. 2017. doi: 10.1109/TAES.2017.2671247
    [13]
    B. Lim and S. Zohren, “Time-series forecasting with deep learning: A survey,” Philos. Trans. A Math. Phys. Eng. Sci., vol. 379, no. 2194, p. 20200209, Apr. 2021.
    [14]
    Z. Q. Li, L. Ma, and K. Khorasani, “Fault diagnosis of an actuator in the attitude control subsystem of a satellite using neural networks,” in Proc. Int. Joint Conf. Neural Networks, Orlando, USA, 2007, pp. 2658–2663.
    [15]
    S. Gundawar, N. Kumar, P. Yash, A. K. Singh, M. Deepan, R. Subramani, B. R. Uma, G. Krishnapriya, B. Shivaprakash, and D. Venkataramana, “Multihead self-attention and LSTM for spacecraft telemetry anomaly detection,” in Proc. 11th Int. Conf. Advanced Computing, Msida, Malta, 2022, pp. 463–479.
    [16]
    A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I, Polosukhin, “Attention is all you need,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA30, 2017, 6000–6010.
    [17]
    H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proc. 35th AAAI Conf. Artificial Intelligence, vol. 35, no. 12, pp. 11106–11115, 2021.
    [18]
    M. Cuturi and M. Blondel, “Soft-DTW: A differentiable loss function for time-series,” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 894–903.
    [19]
    S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580, Oct. 2007. doi: 10.3233/IDA-2007-11508
    [20]
    Z.-F. Cui, B.-W. Xu, W.-F. Zhang, and J.-L. Xu, “An approximate Markov blanket feature selection algorithm,” Chin. J. Comput., vol. 30, no. 12, pp. 2074–2081, Dec. 2007.
    [21]
    D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. Mcvean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel associations in large data sets,” Science, vol. 334, no. 6062, pp. 1518–1524, Dec. 2011. doi: 10.1126/science.1205438
    [22]
    A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Physical Rev. E, vol. 69, no. 6, p. 066138, Jun. 2004. doi: 10.1103/PhysRevE.69.066138
    [23]
    B. Agarwal and N. Mittal, “Prominent feature extraction for review analysis: An empirical study,” J. Exp. Theor. Artif. Intell., vol. 28, no. 3, pp. 485–498, May 2016. doi: 10.1080/0952813X.2014.977830
    [24]
    C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos, “Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: Algorithms and empirical evaluation,” J. Mach. Learn. Res., vol. 11, pp. 171–234, Mar. 2010.
    [25]
    A. Hassan, J. H. Paik, S. Khare, and S. A. Hassan, “PPFS: Predictive permutation feature selection,” arXiv preprint arXiv: 2110.10713, 2021.
    [26]
    G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,” in Proc. OTM Confederated Int. Conf. the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, Sicily, Italy, pp. 986–996.
    [27]
    E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 441–451, Mar. 2019. doi: 10.1109/JAS.2019.1911393

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (24) PDF downloads(7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return