Citation: | L. Xin and Z.-Q. Long, “A learning-based passive resilient controller for cyber-physical systems: Countering stealthy deception attacks and complete loss of actuators control authority,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124683 |
[1] |
H. Guo, J. Sun, and Z.-H. Pang, “Residual-based false data injection attacks against multi-sensor estimation systems,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1181–1191, 2023. doi: 10.1109/JAS.2023.123441
|
[2] |
G. Franze, F. Tedesco, and D. Famularo, “Resilience against replay ` attacks: A distributed model predictive control scheme for networked multi-agent systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 3, pp. 628–640, 2021. doi: 10.1109/JAS.2020.1003542
|
[3] |
X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1234–1251, 2023. doi: 10.1109/JAS.2022.105845
|
[4] |
S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H. Johansson, and A. Chakrabortty, “A systems and control perspective of cps security,” Annual Reviews in Control, vol. 47, pp. 394–411, 2019. doi: 10.1016/j.arcontrol.2019.04.011
|
[5] |
D. Zhang, Q.-G. Wang, G. Feng, Y. Shi, and A. V. Vasilakos, “A survey on attack detection, estimation and control of industrial cyber–physical systems,” ISA transactions, vol. 116, pp. 1–16, 2021. doi: 10.1016/j.isatra.2021.01.036
|
[6] |
J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep learning based attack detection for cyber-physical system cybersecurity: A survey,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 3, pp. 377–391, 2022. doi: 10.1109/JAS.2021.1004261
|
[7] |
J. Zhou, J. Shang, and T. Chen, “Cybersecurity landscape on remote state estimation: A comprehensive review,” IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 4, pp. 851–865, 2024. doi: 10.1109/JAS.2024.124257
|
[8] |
M. Liu, F. Teng, Z. Zhang, P. Ge, M. Sun, R. Deng, P. Cheng, and J. Chen, “Enhancing cyber-resiliency of der-based smart grid: A survey,” IEEE Trans. Smart Grid, 2024.
|
[9] |
X.-Y. Kong and G.-H. Yang, “Anti-watermarking stealthy deception attacks against networked unmanned surface vehicles,” IEEE Trans. Intelligent Transportation Systems, 2024.
|
[10] |
X.-Y. Kong and G.-H. Yang, “An intrusion detection method based on self-generated coding technology for stealthy false data injection attacks in train-ground communication systems,” IEEE Trans. Industrial Electronics, vol. 70, no. 8, pp. 8468–8476, 2023. doi: 10.1109/TIE.2022.3213899
|
[11] |
P. Griffioen, S. Weerakkody, and B. Sinopoli, “A moving target defense for securing cyber-physical systems,” IEEE Trans. Automatic Control, vol. 66, no. 5, pp. 2016–2031, 2020.
|
[12] |
P. Griffioen, S. Weerakkody, and B. Sinopoli, “An optimal design of a moving target defense for attack detection in control systems,” in 2019 American Control Conf. (ACC). IEEE, 2019, pp. 4527–4534.
|
[13] |
M. Ghaderi, K. Gheitasi, and W. Lucia, “A blended active detection strategy for false data injection attacks in cyber-physical systems,” IEEE Trans. Control of Network Systems, vol. 8, no. 1, pp. 168–176, 2020.
|
[14] |
S. X. Ding, L. Li, D. Zhao, C. Louen, and T. Liu, “Application of the unified control and detection framework to detecting stealthy integrity cyber-attacks on feedback control systems,” Automatica, vol. 142, p. 110352, 2022. doi: 10.1016/j.automatica.2022.110352
|
[15] |
C.-Z. Bai, V. Gupta, and F. Pasqualetti, “On Kalman filtering with compromised sensors: Attack stealthiness and performance bounds,” IEEE Trans. Automatic Control, vol. 62, no. 12, pp. 6641–6648, 2017. doi: 10.1109/TAC.2017.2714903
|
[16] |
H. Liu, Y. Ni, L. Xie, and K. H. Johansson, “How vulnerable is innovation-based remote state estimation: Fundamental limits under linear attacks,” Automatica, vol. 136, p. 110079, 2022. doi: 10.1016/j.automatica.2021.110079
|
[17] |
Q. Zhang, K. Liu, Y. Xia, and A. Ma, “Optimal stealthy deception attack against cyber-physical systems,” IEEE Trans. Cybernetics, vol. 50, no. 9, pp. 3963–3972, 2019.
|
[18] |
Y.-G. Li and G.-H. Yang, “Optimal stealthy innovation-based attacks with historical data in cyber-physical systems,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 51, no. 6, pp. 3401–3411, 2019.
|
[19] |
A.-Y. Lu and G.-H. Yang, “Malicious adversaries against secure state estimation: Sparse sensor attack design,” Automatica, vol. 136, p. 110037, 2022. doi: 10.1016/j.automatica.2021.110037
|
[20] |
D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 176–190, 2020.
|
[21] |
M. R. Habibi, H. R. Baghaee, T. Dragičević, and F. Blaabjerg, “False ′ data injection cyber-attacks mitigation in parallel dc/dc converters based on artificial neural networks,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 717–721, 2020.
|
[22] |
H. Zhang, J. Hu, G.-P. Liu, and X. Yu, “Event-triggered secure control of discrete systems under cyber-attacks using an observer-based sliding mode strategy,” Information Sciences, vol. 587, pp. 587–606, 2022. doi: 10.1016/j.ins.2021.12.048
|
[23] |
Y. Zhao, C. Zhou, Y.-C. Tian, and Y. Qin, “Composite finite-time resilient control for cyber-physical systems subject to actuator attacks,” IEEE Trans. Cybernetics, 2021.
|
[24] |
X.-K. Liu, C. Wen, Q. Xu, and Y.-W. Wang, “Resilient control and analysis for dc microgrid system under dos and impulsive fdi attacks,” IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 3742–3754, 2021. doi: 10.1109/TSG.2021.3072218
|
[25] |
Y. Zhou, K. G. Vamvoudakis, W. M. Haddad, and Z.-P. Jiang, “A secure control learning framework for cyber-physical systems under sensor and actuator attacks,” IEEE Trans. Cybernetics, vol. 51, no. 9, pp. 4648–4660, 2020.
|
[26] |
J.-B. Bouvier and M. Ornik, “Designing resilient linear systems,” IEEE Trans. Automatic Control, vol. 67, no. 9, pp. 4832–4837, 2022. doi: 10.1109/TAC.2022.3163242
|
[27] |
W. Duo, M. Zhou, and A. Abusorrah, “A survey of cyber attacks on cyber physical systems: Recent advances and challenges,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 5, pp. 784–800, 2022. doi: 10.1109/JAS.2022.105548
|
[28] |
Y. Zhang and S. Li, “Kinematic control of serial manipulators under false data injection attack,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 4, pp. 1009–1019, 2023. doi: 10.1109/JAS.2023.123132
|
[29] |
C. Du, F. Li, Y. Shi, C. Yang, and W. Gui, “Integral event-triggered attack-resilient control of aircraft-on-ground synergistic turning system with uncertain tire cornering stiffness,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1276–1287, 2023. doi: 10.1109/JAS.2023.123480
|
[30] |
R. M. Ferrari and A. M. Teixeira, Safety, security and privacy for cyberphysical systems. Springer, 2021.
|
[31] |
J.-B. Bouvier and M. Ornik, “Resilience of linear systems to partial loss of control authority,” Automatica, vol. 152, p. 110985, 2023. doi: 10.1016/j.automatica.2023.110985
|
[32] |
R. S. Smith, “Covert misappropriation of networked control systems: Presenting a feedback structure,” IEEE Control Systems Magazine, vol. 35, no. 1, pp. 82–92, 2015. doi: 10.1109/MCS.2014.2364723
|
[33] |
Y. Chen, S. Kar, and J. M. F. Moura, “Dynamic attack detection in cyberphysical systems with side initial state information,” IEEE Trans. Automatic Control, vol. 62, no. 9, pp. 4618–4624, 2017. doi: 10.1109/TAC.2016.2626267
|
[34] |
F. Li and Y. Tang, “False data injection attack for cyber-physical systems with resource constraint,” IEEE Trans. Cybernetics, vol. 50, no. 2, pp. 729–738, 2020. doi: 10.1109/TCYB.2018.2871951
|
[35] |
S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worstcase and stochastic safety verification using barrier certificates,” IEEE Trans. Automatic Control, vol. 52, no. 8, pp. 1415–1428, 2007. doi: 10.1109/TAC.2007.902736
|
[36] |
X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control**this work is partially supported by the national science foundation grants 1239055, 1239037 and 1239085.” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, 2015, analysis and Design of Hybrid Systems ADHS.
|
[37] |
B. Chen, J. Cao, G. Lu, and L. Rutkowski, “Lyapunov functions for the set stability and the synchronization of boolean control networks,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2537–2541, 2020.
|
[38] |
Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse lyapunov theorem for robust stability,” SIAM Journal on Control and Optimization, vol. 34, no. 1, pp. 124–160, 1996. doi: 10.1137/S0363012993259981
|
[39] |
V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural information processing systems, vol. 12, pp. 1008–1014, 1999.
|
[40] |
J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “Highdimensional continuous control using generalized advantage estimation,” 2018.
|
[41] |
H. F. Song, A. Abdolmaleki, J. T. Springenberg, A. Clark, H. Soyer, J. W. Rae, S. Noury, A. Ahuja, S. Liu, D. Tirumala, N. Heess, D. Belov, M. Riedmiller, and M. M. Botvinick, “V-MPO: On-policy maximum a posteriori policy optimization for discrete and continuous control,” arXiv preprint arXiv: 1909.12238, 2019.
|
[42] |
S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and review,” arXiv preprint arXiv: 1805.00909, 2018.
|
[43] |
R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and other variants,” Learning in graphical models, pp. 355–368, 1998.
|
[44] |
M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee, “Design and implementation of attack-resilient cyberphysical systems: With a focus on attack-resilient state estimators,” IEEE Control Systems Magazine, vol. 37, no. 2, pp. 66–81, 2017. doi: 10.1109/MCS.2016.2643239
|
[45] |
I. Doroftei, V. Grosu, and V. Spinu, Omnidirectional mobile robot-design and implementation. INTECH Open Access Publisher London, UK, 2007.
|
[46] |
R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE transactions on Robotics and Automation, vol. 18, no. 3, pp. 285–293, 2002. doi: 10.1109/TRA.2002.1019459
|
[47] |
G. Franzè, D. Famularo, W. Lucia, and F. Tedesco, “Cyber–physical systems subject to false data injections: A model predictive control framework for resilience operations,” Automatica, vol. 152, p. 110957, 2023. doi: 10.1016/j.automatica.2023.110957
|
[48] |
J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.
|