A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
D. Li, J. Huang, R. Law, X. Xu, L. Zhu, and E. Wu, “Interference suppression and jitter elimination ability-based adaption tracking guidance for robotic fishes,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 1–12, Dec. 2024. doi: 10.1109/JAS.2024.124632
Citation: D. Li, J. Huang, R. Law, X. Xu, L. Zhu, and E. Wu, “Interference suppression and jitter elimination ability-based adaption tracking guidance for robotic fishes,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 1–12, Dec. 2024. doi: 10.1109/JAS.2024.124632

Interference Suppression and Jitter Elimination Ability-Based Adaption Tracking Guidance for Robotic Fishes

doi: 10.1109/JAS.2024.124632
Funds:  In this work, Zeng Linlin demonstrated extraordinary abilities and wisdom in the experiment, and his outstanding achievements played a crucial role in advancing the entire research
More Information
  • This work presents an adaptive tracking guidance method for robotic fishes. The scheme enables robots to suppress external interference and eliminate motion jitter. An adaptive integral surge line-of-sight guidance rule is designed to eliminate dynamics interference and sideslip issues. Limited-time yaw and surge speed observers are reported to fit disturbance variables in the model. The approximation values can compensate for the system’s control input and improve the robots’ tracking accuracy. Moreover, this work develops a terminal sliding mode controller and third-order differential processor to determine the rotational torque and reduce the robots’ run jitter. Then, Lyapunov’s theory proves the uniform ultimate boundedness of the proposed method. Simulation and physical experiments confirm that the technology improves the tracking error convergence speed and stability of robotic fishes.

     

  • loading
  • [1]
    Y. Zhong, Z. Hong, Y. Li, and J. Yu, “A general kinematic model of fish locomotion enables robot fish to master multiple swimming motions,” IEEE Trans. Robot., vol. 40, pp. 750–763, 2024.
    [2]
    T. J. K. Ng, N. Chen, and F. Zhang, “Snapp: An agile robotic fish with 3-d maneuverability for open water swim,” IEEE Robot. Autom. Lett., vol. 8, no. 10, pp. 6499–6506, Oct. 2023. doi: 10.1109/LRA.2023.3308015
    [3]
    D. Li, B. Zhang, Y. Xiu, H. Deng, M. Zhang, W. Tong, R. Law, G. Zhu, E. Q. Wu, and L. Zhu, “Snake robots play an important role in social services and military needs,” Innovation, vol. 3, no. 6, p. 100333, Nov. 2022.
    [4]
    S. Dai, Z. Wu, J. Wang, M. Tan, and J. Yu, “Barrier-based adaptive line-of-sight 3-D path-following system for a multijoint robotic fish with sideslip compensation,” IEEE Trans. Cybern., vol. 53, no. 7, pp. 4204–4217, Jul. 2023. doi: 10.1109/TCYB.2022.3155761
    [5]
    Q. X. Wang, “The aerodynamics of a slender body moving very close to a water wave surface,” IMA J. Appl. Math., vol. 78, no. 2, pp. 307–337, Apr. 2013. doi: 10.1093/imamat/hxr051
    [6]
    J. Wang and X. Tan, “Averaging tail-actuated robotic fish dynamics through force and moment scaling,” IEEE Trans. Robot., vol. 31, no. 4, pp. 906–917, Aug. 2015. doi: 10.1109/TRO.2015.2433539
    [7]
    M. L. Castaño and X. Tan, “Model predictive control-based path-following for tail-actuated robotic fish,” J. Dyn. Syst. Meas., Control, vol. 141, no. 7, p. 071012, Jul. 2019. doi: 10.1115/1.4043152
    [8]
    W. Wang, X. Dai, L. Li, B. H. Gheneti, Y. Ding, J. Yu, and G. Xie, “Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming,” IEEE/ASME Trans. Mech., vol. 23, no. 4, pp. 1641–1652, Aug. 2018. doi: 10.1109/TMECH.2018.2848220
    [9]
    Q. Ren, J. Xu, and X. Li, “A data-driven motion control approach for a robotic fish,” J. Bionic Eng., vol. 12, no. 3, pp. 382–394, Sep. 2015. doi: 10.1016/S1672-6529(14)60130-X
    [10]
    K. Nelson and K. Mohseni, “Hydrodynamic force decoupling using a distributed sensory system,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 3235–3242, Apr. 2020. doi: 10.1109/LRA.2020.2976331
    [11]
    X. Liao, C. Zhou, Q. Zou, J. Wang, and B. Lu, “Dynamic modeling and performance analysis for a wire-driven elastic robotic fish,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 11174–11181, Oct. 2022. doi: 10.1109/LRA.2022.3197911
    [12]
    J. Yu, J. Liu, Z. Wu, and H. Fang, “Depth control of a bioinspired robotic dolphin based on sliding-mode fuzzy control method,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2429–2438, Mar. 2018. doi: 10.1109/TIE.2017.2745451
    [13]
    M. L. Castaño and X. Tan, “Model predictive control-based path-following for tail-actuated robotic fish,” J. Dyn. Syst. Meas., Control, vol. 141, no. 7, pp. 071012, Jul. 2019.
    [14]
    L. Shi, Y. Hu, S. Su, S. Guo, H. Xing, X. Hou, Y. Liu, Z. Chen, Z. Li, and D. Xia, “A fuzzy PID algorithm for a novel miniature spherical robots with three-dimensional underwater motion control,” J. Bionic Eng., vol. 17, no. 5, pp. 959–969, Aug. 2020. doi: 10.1007/s42235-020-0087-3
    [15]
    K. Wang, W. Zou, R. Ma, Y. Wang, and H. Su, “Model predictive trajectory tracking control of an underactuated bionic underwater vehicle,” IEEE/ASME Trans. Mech., vol. 29, no. 3, pp. 1690–1701, Jun. 2024. doi: 10.1109/TMECH.2023.3312562
    [16]
    Q. Li, G. Yang, F. Yu, and Y. Chen, “Adaptive fractional order non-singular terminal sliding mode controller for underwater soft crawling robots with parameter uncertainties and unknown disturbances,” Ocean Eng., vol. 271, p. 113728, Mar. 2023. doi: 10.1016/j.oceaneng.2023.113728
    [17]
    C. Qiu, Z. Wu, J. Wang, M. Tan, and J. Yu, “Multiagent-reinforcement-learning-based stable path tracking control for a bionic robotic fish with reaction wheel,” IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12670–12679, Dec. 2023. doi: 10.1109/TIE.2023.3239937
    [18]
    S. Zhang, X. Qian, Z. Liu, Q. Li, and G. Li, “PDE modeling and tracking control for the flexible tail of an autonomous robotic fish,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 12, pp. 7618–7627, Dec. 2022. doi: 10.1109/TSMC.2022.3147384
    [19]
    W. Caharija, K. Pettersen, M. Bibuli, P. Calado, E. Zereik, J. Braga, J. T. Gravdahl, A. J. Sørensen, M. Milovanović, and G. Bruzzone, “Integral line-of-sight guidance and control of underactuated marine vehicles: Theory, simulations, and experiments,” IEEE Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1623–1642, Sep. 2016. doi: 10.1109/TCST.2015.2504838
    [20]
    T. I. Fossen, “An adaptive line-of-sight (ALOS) guidance law for path following of aircraft and marine craft,” IEEE Trans. Control Syst. Technol., vol. 31, no. 6, pp. 2887–2894, Nov. 2023. doi: 10.1109/TCST.2023.3259819
    [21]
    W. Liu, H. Ye, and X. Yang, “Super-twisting sliding mode control for the trajectory tracking of underactuated USVs with disturbances,” J. Mar. Sci. Eng., vol. 11, no. 3, p. 636, Mar. 2023. doi: 10.3390/jmse11030636
    [22]
    Y. Zheng, J. Tao, J. Hartikainen, F. Duan, H. Sun, M. Sun, Q. Sun, X. Zeng, Z. Chen, and G. Xie, “DDPG based LADRC trajectory tracking control for underactuated unmanned ship under environmental disturbances,” Ocean Eng., vol. 271, p. 113667, Mar. 2023. doi: 10.1016/j.oceaneng.2023.113667
    [23]
    S. Wang, M. Sun, Y. Xu, J. Liu, and C. Sun, “Predictor-based fixed-time LOS path following control of underactuated USV with unknown disturbances,” IEEE Trans. Intell. Veh., vol. 8, no. 3, pp. 2088–2096, Mar. 2023. doi: 10.1109/TIV.2023.3245612
    [24]
    D. Li, B. Zhang, P. Li, E. Q. Wu, R. Law, X. Xu, A. Song, and L.-M. Zhu, “Parameter estimation and anti-sideslip line-of-sight method-based adaptive path-following controller for a multijoint snake robot,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 8, pp. 4776–4788, Aug. 2023. doi: 10.1109/TSMC.2023.3256383
    [25]
    J. Yu, Z. Wu, X. Yang, Y. Yang, and P. Zhang, “Underwater target tracking control of an untethered robotic fish with a camera stabilizer,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 10, pp. 6523–6534, Oct. 2021. doi: 10.1109/TSMC.2019.2963246
    [26]
    B. Chen and H. Jiang, “Body stiffness variation of a tensegrity robotic fish using antagonistic stiffness in a kinematically singular configuration,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1712–1727, Oct. 2021. doi: 10.1109/TRO.2021.3049430
    [27]
    G. J. Yang and B. W. Choi, “Smooth trajectory planning along Bezier curve for mobile robots with velocity constraints,” Int. J. Control Autom., vol. 6, no. 2, pp. 225–234, Apr. 2013.
    [28]
    M. Castaño and X. Tan, “Trajectory tracking control of rowing pectoral fin-actuated robotic fish,” IEEE/ASME Trans. Mech., vol. 27, no. 4, pp. 2007–2015, Aug. 2022. doi: 10.1109/TMECH.2022.3175765
    [29]
    J. Nie, H. Wang, X. Lu, X. Lin, C. Sheng, Z. Zhang, and S. Song, “Finite-time output feedback path following control of underactuated MSV based on FTESO,” Ocean Eng., vol. 224, p. 108660, Mar. 2021. doi: 10.1016/j.oceaneng.2021.108660
    [30]
    X. Bu, B. Jiang, and H. Lei, “Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4, pp. 3538–3548, Aug. 2022. doi: 10.1109/TAES.2022.3153429
    [31]
    D. Li, Y. Zhang, P. Li, R. Law, Z. Xiang, X. Xu, L. Zhu, and E. Q. Wu, “Position errors and interference prediction-based trajectory tracking for snake robots,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1810–1821, Sep. 2023. doi: 10.1109/JAS.2023.123612
    [32]
    D. Li, B. Zhang, R. Law, E. Q. Wu, and X. Xu, “Error constrained-formation path-following method with disturbance elimination for multisnake robots,” IEEE Trans. Ind. Electron., vol. 71, no. 5, pp. 4987–4998, May 2024. doi: 10.1109/TIE.2023.3288202
    [33]
    Y. Xiu, D. Li, M. Zhang, H. Deng, R. Law, Y. Huang, E. Q. Wu, and X. Xu, “Finite-time sideslip differentiator-based LOS guidance for robust path following of snake robots,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 239–253, Jan. 2023. doi: 10.1109/JAS.2022.106052
    [34]
    W. Sun and Q. Liu, “Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications,” Math. Method. Appl. Sci., vol. 43, no. 9, pp. 5776–5787, Jun. 2020. doi: 10.1002/mma.6319
    [35]
    V. Azimi and P. A. Vela, “Robust adaptive quadratic programming and safety performance of nonlinear systems with unstructured uncertainties,” in Proc. IEEE Conf. Decision and Control, Miami, USA, 2018, pp. 5536–5543.
    [36]
    G. Wang, W. Yang, Y. Shen, and H. Shao, “Adaptive path following of snake robot on ground with unknown and varied friction coefficients,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Madrid, Spain, 2018, pp. 7583–7588.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (28) PDF downloads(7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return