A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
S. Zhang and R. Jia, “A self-healing predictive control method for discrete-time nonlinear systems,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124620
Citation: S. Zhang and R. Jia, “A self-healing predictive control method for discrete-time nonlinear systems,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124620

A Self-healing Predictive Control Method for Discrete-time Nonlinear Systems

doi: 10.1109/JAS.2024.124620
Funds:  This work was supported in part the National Key Research and Development Program of China (No. 2021YFC2902703), Open Foundation of State Key Laboratory of Process Automation in Mining & Metallurgy/Beijing Key Laboratory of Process Automation in Mining & Metallurgy (No. BGRIMM-KZSKL-2022-6) and National Natural Science Foundation of China (Nos. 62173078 and 61873049)
More Information
  • In this work, a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states. First, a robust MPC controller for the normal case is constructed, which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set. In this controller, the tubes are built based on the incremental Lyapunov function to tighten nominal constraints. To deal with the infeasible controller when abnormal states occur, a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set. This is achieved by an auxiliary soft-constrained recovery mechanism that can solve the constraint violation caused by the abnormal states. By extending the discrete-time robust control barrier function theory, it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set. The theoretical properties of robust recursive feasibility and bounded stability are further analyzed. The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.

     

  • loading
  • [1]
    M. Baker, H. Althuwaini, and M. B. Shadmand, “A self-learning scheme to detect and mitigate the impact of model parameters imperfection in predictive controlled grid-tied inverter,” in 2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics (COMPEL). IEEE, 2021, pp. 1–7.
    [2]
    M. Hosseinzadehtaher, A. Khan, M. Easley, M. B. Shadmand, and P. Fajri, “Self-healing predictive control of battery system in naval power system with pulsed power loads,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1056–1069, 2020.
    [3]
    B. E. Briley, “A self-healing control,” Bell System Technical Journal, vol. 47, no. 10, pp. 2367–2378, 1968. doi: 10.1002/j.1538-7305.1968.tb01089.x
    [4]
    X. Qi, J. Qi, D. Theilliol, D. Song, Y. Zhang, and J. Han, “Self-healing control design under actuator fault occurrence on single-rotor unmanned helicopters,” J. Intell. Robot. Syst., vol. 84, pp. 21–35, 2016. doi: 10.1007/s10846-016-0341-4
    [5]
    L. Besnard, Y. B. Shtessel, and B. Landrum, “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer,” J. Franklin Inst., vol. 349, no. 2, pp. 658–684, 2012. doi: 10.1016/j.jfranklin.2011.06.031
    [6]
    S. A. Arefifar, Y. A.-R. I. Mohamed, and T. H. El-Fouly, “Comprehensive operational planning framework for self-healing control actions in smart distribution grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4192–4200, 2013. doi: 10.1109/TPWRS.2013.2259852
    [7]
    H. Liu, X. Chen, K. Yu, and Y. Hou, “The control and analysis of self-healing urban power grid,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1119–1129, 2012. doi: 10.1109/TSG.2011.2167525
    [8]
    A. Elmitwally, M. Elsaid, M. Elgamal, and Z. Chen, “A fuzzy-multiagent self-healing scheme for a distribution system with distributed generations,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2612–2622, 2014.
    [9]
    H. Liang and X. Yin, “Self-healing control: Review, framework, and prospect,” IEEE Access, vol. 11, pp. 79 495–79 512, 2023. doi: 10.1109/ACCESS.2023.3298554
    [10]
    R. Jia, B. Zhang, D. He, Z. Mao, and F. Chu, “Data-driven-based self-healing control of abnormal feeding conditions in thickening–dewatering process,” Miner. Eng., vol. 146, p. 106141, 2020. doi: 10.1016/j.mineng.2019.106141
    [11]
    H. Li, F. Wang, and H. Li, “A safe control scheme under the abnormity for the thickening process of gold hydrometallurgy based on bayesian network,” Knowl. Based. Syst., vol. 119, pp. 10–19, 2017. doi: 10.1016/j.knosys.2016.11.026
    [12]
    Z. Wu, Y. Wu, T. Chai, and J. Sun, “Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1703–1715, 2014.
    [13]
    P. Du, W. Zhong, X. Peng, L. Li, and Z. Li, “Self-healing control for wastewater treatment process based on variable-gain state observer,” IEEE Trans. Industr. Inform., vol. 19, no. 10, pp. 10 412–10 424, 2023. doi: 10.1109/TII.2023.3240937
    [14]
    P. Du, X. Peng, Z. Li, L. Li, and W. Zhong, “Performance-guaranteed adaptive self-healing control for wastewater treatment processes,” J. Process Control, vol. 116, pp. 147–158, 2022. doi: 10.1016/j.jprocont.2022.06.004
    [15]
    E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact penalty functions in model predictive control,” in Control 2000 Conf., Cambridge, 2000, pp. 2319–2327.
    [16]
    M. N. Zeilinger, M. Morari, and C. N. Jones, “Soft constrained model predictive control with robust stability guarantees,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1190–1202, 2014. doi: 10.1109/TAC.2014.2304371
    [17]
    C. Feller and C. Ebenbauer, “A stabilizing iteration scheme for model predictive control based on relaxed barrier functions,” Automatica, vol. 80, pp. 328–339, 2017. doi: 10.1016/j.automatica.2017.02.001
    [18]
    Z. Wu, F. Albalawi, Z. Zhang, J. Zhang, H. Durand, and P. D. Christofides, “Control lyapunov-barrier function-based model predictive control of nonlinear systems,” Automatica, vol. 109, p. 108508, 2019. doi: 10.1016/j.automatica.2019.108508
    [19]
    A. Agrawal and K. Sreenath, “Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation.” in Robotics: Science and Systems, vol. 13. Cambridge, MA, USA, 2017.
    [20]
    K. P. Wabersich and M. N. Zeilinger, “Predictive control barrier functions: Enhanced safety mechanisms for learning-based control,” IEEE Trans. Autom. Control, p. , 2022.
    [21]
    M. E. Villanueva, R. Quirynen, M. Diehl, B. Chachuat, and B. Houska, “Robust mpc via min–max differential inequalities,” Automatica, vol. 77, pp. 311–321, 2017. doi: 10.1016/j.automatica.2016.11.022
    [22]
    D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. F. ndez Camacho, “Min-max model predictive control of nonlinear systems: A unifying overview on stability,” Eur. J. Control, vol. 15, no. 1, pp. 5–21, 2009. doi: 10.3166/ejc.15.5-21
    [23]
    M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, “Stochastic mpc with offline uncertainty sampling,” Automatica, vol. 81, pp. 176–183, 2017. doi: 10.1016/j.automatica.2017.03.031
    [24]
    L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive control using gaussian process regression,” IEEE Trans. Control Syst. Technol., vol. 28, no. 6, pp. 2736–2743, 2019.
    [25]
    S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube mpc scheme based on robust control invariant set with application to lipschitz nonlinear systems,” Syst. Control Lett., vol. 62, no. 2, pp. 194–200, 2013. doi: 10.1016/j.sysconle.2012.11.004
    [26]
    D. D. Fan, A.-a. Agha-mohammadi, and E. A. Theodorou, “Deep learning tubes for tube mpc,” arXiv preprint arXiv:2002.01587, 2020.
    [27]
    J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems,” IEEE Trans. Autom. Control, vol. 66, no. 2, pp. 794–801, 2020.
    [28]
    J. Köhler, M. A. Müller, and F. Allgöwer, “A nonlinear model predictive control framework using reference generic terminal ingredients,” IEEE Trans. Autom. Control, vol. 65, no. 8, pp. 3576–3583, 2019.
    [29]
    P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,” Mathematical programming, vol. 96, pp. 293–320, 2003. doi: 10.1007/s10107-003-0387-5
    [30]
    S. Zhang, R. Jia, D. He, and F. Chu, “Data-driven robust optimization based on principle component analysis and cutting plane methods,” Ind. Eng. Chem. Res., vol. 61, no. 5, pp. 2167–2182, 2022. doi: 10.1021/acs.iecr.1c03886
    [31]
    J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems – extended version,” arXiv preprint arXiv:2002.01587, 2019.
    [32]
    M. Ohnishi, L. Wang, G. Notomista, and M. Egerstedt, “Barrier-certified adaptive reinforcement learning with applications to brushbot navigation,” IEEE Trans. Rob., vol. 35, no. 5, pp. 1186–1205, 2019. doi: 10.1109/TRO.2019.2920206
    [33]
    J. STRUM, “Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones,” Optim. Methods Softw., p. , 2001.
    [34]
    J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a software framework for nonlinear optimization and optimal control,” Math. Program. Comput, vol. 11, pp. 1–36, 2019. doi: 10.1007/s12532-018-0139-4
    [35]
    L. P. Russo and B. W. Bequette, “State-space versus input/output representations for cascade control of unstable systems,” Ind. Eng. Chem. Res, vol. 36, no. 6, pp. 2271–2278, 1997. doi: 10.1021/ie960677o
    [36]
    R. Yadbantung and P. Bumroongsri, “Tube-based robust output feedback mpc for constrained ltv systems with applications in chemical processes,” Eur. J. Control, vol. 47, pp. 11–19, 2019. doi: 10.1016/j.ejcon.2018.07.002
    [37]
    J. Köhler, M. A. Müller, and F. Allgöwer, “Nonlinear reference tracking: An economic model predictive control perspective,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 254–269, 2018.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (17) PDF downloads(6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return