Citation: | S. Zhang and R. Jia, “A self-healing predictive control method for discrete-time nonlinear systems,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124620 |
[1] |
M. Baker, H. Althuwaini, and M. B. Shadmand, “A self-learning scheme to detect and mitigate the impact of model parameters imperfection in predictive controlled grid-tied inverter,” in 2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics (COMPEL). IEEE, 2021, pp. 1–7.
|
[2] |
M. Hosseinzadehtaher, A. Khan, M. Easley, M. B. Shadmand, and P. Fajri, “Self-healing predictive control of battery system in naval power system with pulsed power loads,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1056–1069, 2020.
|
[3] |
B. E. Briley, “A self-healing control,” Bell System Technical Journal, vol. 47, no. 10, pp. 2367–2378, 1968. doi: 10.1002/j.1538-7305.1968.tb01089.x
|
[4] |
X. Qi, J. Qi, D. Theilliol, D. Song, Y. Zhang, and J. Han, “Self-healing control design under actuator fault occurrence on single-rotor unmanned helicopters,” J. Intell. Robot. Syst., vol. 84, pp. 21–35, 2016. doi: 10.1007/s10846-016-0341-4
|
[5] |
L. Besnard, Y. B. Shtessel, and B. Landrum, “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer,” J. Franklin Inst., vol. 349, no. 2, pp. 658–684, 2012. doi: 10.1016/j.jfranklin.2011.06.031
|
[6] |
S. A. Arefifar, Y. A.-R. I. Mohamed, and T. H. El-Fouly, “Comprehensive operational planning framework for self-healing control actions in smart distribution grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4192–4200, 2013. doi: 10.1109/TPWRS.2013.2259852
|
[7] |
H. Liu, X. Chen, K. Yu, and Y. Hou, “The control and analysis of self-healing urban power grid,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1119–1129, 2012. doi: 10.1109/TSG.2011.2167525
|
[8] |
A. Elmitwally, M. Elsaid, M. Elgamal, and Z. Chen, “A fuzzy-multiagent self-healing scheme for a distribution system with distributed generations,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2612–2622, 2014.
|
[9] |
H. Liang and X. Yin, “Self-healing control: Review, framework, and prospect,” IEEE Access, vol. 11, pp. 79 495–79 512, 2023. doi: 10.1109/ACCESS.2023.3298554
|
[10] |
R. Jia, B. Zhang, D. He, Z. Mao, and F. Chu, “Data-driven-based self-healing control of abnormal feeding conditions in thickening–dewatering process,” Miner. Eng., vol. 146, p. 106141, 2020. doi: 10.1016/j.mineng.2019.106141
|
[11] |
H. Li, F. Wang, and H. Li, “A safe control scheme under the abnormity for the thickening process of gold hydrometallurgy based on bayesian network,” Knowl. Based. Syst., vol. 119, pp. 10–19, 2017. doi: 10.1016/j.knosys.2016.11.026
|
[12] |
Z. Wu, Y. Wu, T. Chai, and J. Sun, “Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1703–1715, 2014.
|
[13] |
P. Du, W. Zhong, X. Peng, L. Li, and Z. Li, “Self-healing control for wastewater treatment process based on variable-gain state observer,” IEEE Trans. Industr. Inform., vol. 19, no. 10, pp. 10 412–10 424, 2023. doi: 10.1109/TII.2023.3240937
|
[14] |
P. Du, X. Peng, Z. Li, L. Li, and W. Zhong, “Performance-guaranteed adaptive self-healing control for wastewater treatment processes,” J. Process Control, vol. 116, pp. 147–158, 2022. doi: 10.1016/j.jprocont.2022.06.004
|
[15] |
E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact penalty functions in model predictive control,” in Control 2000 Conf., Cambridge, 2000, pp. 2319–2327.
|
[16] |
M. N. Zeilinger, M. Morari, and C. N. Jones, “Soft constrained model predictive control with robust stability guarantees,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1190–1202, 2014. doi: 10.1109/TAC.2014.2304371
|
[17] |
C. Feller and C. Ebenbauer, “A stabilizing iteration scheme for model predictive control based on relaxed barrier functions,” Automatica, vol. 80, pp. 328–339, 2017. doi: 10.1016/j.automatica.2017.02.001
|
[18] |
Z. Wu, F. Albalawi, Z. Zhang, J. Zhang, H. Durand, and P. D. Christofides, “Control lyapunov-barrier function-based model predictive control of nonlinear systems,” Automatica, vol. 109, p. 108508, 2019. doi: 10.1016/j.automatica.2019.108508
|
[19] |
A. Agrawal and K. Sreenath, “Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation.” in Robotics: Science and Systems, vol. 13. Cambridge, MA, USA, 2017.
|
[20] |
K. P. Wabersich and M. N. Zeilinger, “Predictive control barrier functions: Enhanced safety mechanisms for learning-based control,” IEEE Trans. Autom. Control, p. , 2022.
|
[21] |
M. E. Villanueva, R. Quirynen, M. Diehl, B. Chachuat, and B. Houska, “Robust mpc via min–max differential inequalities,” Automatica, vol. 77, pp. 311–321, 2017. doi: 10.1016/j.automatica.2016.11.022
|
[22] |
D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. F. ndez Camacho, “Min-max model predictive control of nonlinear systems: A unifying overview on stability,” Eur. J. Control, vol. 15, no. 1, pp. 5–21, 2009. doi: 10.3166/ejc.15.5-21
|
[23] |
M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, “Stochastic mpc with offline uncertainty sampling,” Automatica, vol. 81, pp. 176–183, 2017. doi: 10.1016/j.automatica.2017.03.031
|
[24] |
L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive control using gaussian process regression,” IEEE Trans. Control Syst. Technol., vol. 28, no. 6, pp. 2736–2743, 2019.
|
[25] |
S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube mpc scheme based on robust control invariant set with application to lipschitz nonlinear systems,” Syst. Control Lett., vol. 62, no. 2, pp. 194–200, 2013. doi: 10.1016/j.sysconle.2012.11.004
|
[26] |
D. D. Fan, A.-a. Agha-mohammadi, and E. A. Theodorou, “Deep learning tubes for tube mpc,” arXiv preprint arXiv:2002.01587, 2020.
|
[27] |
J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems,” IEEE Trans. Autom. Control, vol. 66, no. 2, pp. 794–801, 2020.
|
[28] |
J. Köhler, M. A. Müller, and F. Allgöwer, “A nonlinear model predictive control framework using reference generic terminal ingredients,” IEEE Trans. Autom. Control, vol. 65, no. 8, pp. 3576–3583, 2019.
|
[29] |
P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,” Mathematical programming, vol. 96, pp. 293–320, 2003. doi: 10.1007/s10107-003-0387-5
|
[30] |
S. Zhang, R. Jia, D. He, and F. Chu, “Data-driven robust optimization based on principle component analysis and cutting plane methods,” Ind. Eng. Chem. Res., vol. 61, no. 5, pp. 2167–2182, 2022. doi: 10.1021/acs.iecr.1c03886
|
[31] |
J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems – extended version,” arXiv preprint arXiv:2002.01587, 2019.
|
[32] |
M. Ohnishi, L. Wang, G. Notomista, and M. Egerstedt, “Barrier-certified adaptive reinforcement learning with applications to brushbot navigation,” IEEE Trans. Rob., vol. 35, no. 5, pp. 1186–1205, 2019. doi: 10.1109/TRO.2019.2920206
|
[33] |
J. STRUM, “Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones,” Optim. Methods Softw., p. , 2001.
|
[34] |
J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a software framework for nonlinear optimization and optimal control,” Math. Program. Comput, vol. 11, pp. 1–36, 2019. doi: 10.1007/s12532-018-0139-4
|
[35] |
L. P. Russo and B. W. Bequette, “State-space versus input/output representations for cascade control of unstable systems,” Ind. Eng. Chem. Res, vol. 36, no. 6, pp. 2271–2278, 1997. doi: 10.1021/ie960677o
|
[36] |
R. Yadbantung and P. Bumroongsri, “Tube-based robust output feedback mpc for constrained ltv systems with applications in chemical processes,” Eur. J. Control, vol. 47, pp. 11–19, 2019. doi: 10.1016/j.ejcon.2018.07.002
|
[37] |
J. Köhler, M. A. Müller, and F. Allgöwer, “Nonlinear reference tracking: An economic model predictive control perspective,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 254–269, 2018.
|