IEEE/CAA Journal of Automatica Sinica
Citation: | X. Liao, K. Hoang, and X. Luo, “Local search-based anytime algorithms for continuous distributed constraint optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 288–290, Jan. 2025. doi: 10.1109/JAS.2024.124413 |
[1] |
F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint optimization problems and applications: A survey,” J. Artificial Intelligence Research, vol. 61, no. 1, pp. 623–698, Jan. 2018.
|
[2] |
X. Jiang, X. Zeng, J. Sun, et al., “A fully distributed hybrid control framework for non-differentiable multi-agent optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1792–1800, Oct. 2022. doi: 10.1109/JAS.2022.105872
|
[3] |
J. Wang, Y. Hong, J. Wang, et al., “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 763–783, May 2022. doi: 10.1109/JAS.2022.105506
|
[4] |
M. Kang, C. Wen, and C. Wu, “A model predictive scheduling algorithm in real-time control systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 471–478, Mar. 2018. doi: 10.1109/JAS.2017.7510826
|
[5] |
Z. Liu, Y. Yuan, X. Guan, et al., “An approach of distributed joint optimization for cluster-based wireless sensor networks,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 267–273, Jul. 2015. doi: 10.1109/JAS.2015.7152660
|
[6] |
X. Ren, D. Li, Y. Xi, et al., “Distributed subgradient algorithm for multi-agent optimization with dynamic stepsize,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1451–1464, Aug. 2021. doi: 10.1109/JAS.2021.1003904
|
[7] |
J. Huang, S. Zhou, H. Tu, et al., “Distributed optimization algorithm for multi-robot formation with virtual reference center,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 732–734, Apr. 2022. doi: 10.1109/JAS.2022.105473
|
[8] |
Q. Dong, L. Yu, W. Song, et al., “Fast distributed demand response algorithm in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 280–296, Apr. 2017. doi: 10.1109/JAS.2017.7510529
|
[9] |
Y. Li, W. Yu, and X. Guan, “Current-aided multiple-AUV cooperative localization and target tracking in anchor-free environments,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 792–806, Mar. 2023. doi: 10.1109/JAS.2022.105989
|
[10] |
C. Premachandra, M. Otsuka, R. Gohara, et al., “A study on development of a hybrid aerial/terrestrial robot system for avoiding ground obstacles by flight,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 327–336, Jan. 2019. doi: 10.1109/JAS.2018.7511258
|
[11] |
X. Luo, L. Feng, J. Yan, et al., “Dynamic coverage with wireless sensor and actor networks in underwater environment,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 274–281, Jul. 2015. doi: 10.1109/JAS.2015.7152661
|
[12] |
R. Stranders, A. Farinelli, A. Rogers, et al., “Decentralised control of continuously valued control parameters using the max-sum algorithm,” in Proc. 8th Int. Conf. Auto. Agents and Multi-Agent Syst., 2009, pp. 601–608.
|
[13] |
R. Zivan, S. Okamoto, and H. Peled, “Explorative anytime local search for distributed constraint optimization,” Artificial Intelligence, vol. 212, no. 1, pp. 1–26, Jul. 2014.
|
[14] |
S. Mahmud, M. Choudhury, M. M. Khan, et al., “AED: An anytime evolutionary DCOP algorithm,” in Proc. 19th Int. Conf. Auto. Agents and Multi-Agent Syst., 2020, pp. 825–833.
|
[15] |
A. Farinelli, A. Rogers, A. Petcu, et al., “Decentralised coordination of low-power embedded devices using the max-sum algorithm,” in Proc. 7th Int. Conf. Auto. Agents and Multi-Agent Syst., 2008, pp. 639–646.
|
[16] |
T. Voice, R. Stranders, A. Rogers, et al., “A hybrid continuous max-sum algorithm for decentralised coordination,” in Proc. 19th European Conf. Artificial Intelligence, 2010, pp. 61–66.
|
[17] |
J. Fransman, J. Sijs, H. Dol, et al., “Bayesian-dpop for continuous distributed constraint optimization problems,” in Proc. 18th Int. Conf. Auto. Agents and Multi-Agent Syst., 2019, pp. 1961–1963.
|
[18] |
K. D. Hoang, W. Yeoh, M. Yokoo, et al., “New algorithms for continuous distributed constraint optimization problems,” in Proc. 19th Int. Conf. Auto. Agents and Multi-Agent Syst., 2020, pp. 502–510.
|
[19] |
A. Sarker, M. Choudhury, and M. M. Khan, “A local search based approach to solve continuous DCOPS,” in Proc. 20th Int. Conf. Auto. Agents and Multi-Agent Syst., 2021, pp. 1127–1135.
|
[20] |
M. Choudhury, S. Mahmud, and M. M. Khan, “A particle swarm based algorithm for functional distributed constraint optimization problems,” in Proc. AAAI Conf. Artificial Intelligence, 2020, pp. 7111–7118.
|
[21] |
M. F. Shi, X. Liao, and Y. Chen, “A particle swarm with local decision algorithm for functional distributed constraint optimization problems,” Int. J. Pattern Recognition and Artificial Intelligence, vol. 36, no. 12, p. 2259025, Aug. 2022. doi: 10.1142/S021800142259025X
|
[22] |
P. Erdős and A. Rényi, “On the evolution of random graphs,” Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 5, no. 1, pp. 17–60, Oct. 1960.
|
[23] |
A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999. doi: 10.1126/science.286.5439.509
|
[24] |
M. E. J. Newman, and D. J. Watts, “Renormalization group analysis of the small-world network model,” Physics, Letters A, vol. 263, no. 4–6, pp. 341–346, Dec. 1999. doi: 10.1016/S0375-9601(99)00757-4
|