IEEE/CAA Journal of Automatica Sinica
Citation: | L. Wang, Z. Li, G. Guo, and Z. Kong, “Target controllability of multi-layer networks with high-dimensional nodes,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 9, pp. 1999–2010, Sept. 2024. doi: 10.1109/JAS.2023.124152 |
This paper studies the target controllability of multi-layer complex networked systems, in which the nodes are high-dimensional linear time invariant (LTI) dynamical systems, and the network topology is directed and weighted. The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed. It is found that even if there exists a layer which is not target controllable, the entire multi-layer network can still be target controllable due to the inter-layer couplings. For the multi-layer networks with general structure, a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix. By the derived condition, it can be found that the system may be target controllable even if it is not state controllable. On this basis, two corollaries are derived, which clarify the relationship between target controllability, state controllability and output controllability. For the multi-layer networks where the inter-layer couplings are directed chains and directed stars, sufficient conditions for target controllability of networked systems are given, respectively. These conditions are easier to verify than the classic criterion.
[1] |
D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998. doi: 10.1038/30918
|
[2] |
A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999. doi: 10.1126/science.286.5439.509
|
[3] |
Y. Wu, Z. Chen, X. Zhao, Y. Liu, P. Zhang, and Y. Liu, “Robust analysis of cascading failures in complex networks,” Phys. A Stat. Mech. Appl., vol. 583, p. 126320, Dec. 2021. doi: 10.1016/j.physa.2021.126320
|
[4] |
L. Wang, Z. Li, G. Zhao, G. Guo, and Z. Kong, “Input structure design for structural controllability of complex networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1571–1581, Jul. 2023. doi: 10.1109/JAS.2023.123504
|
[5] |
P. Arebi, A. Fatemi, and R. Ramezani, “Event stream controllability on event-based complex networks,” Exp. Syst. Appl., vol. 213, p. 118886, Mar. 2023. doi: 10.1016/j.eswa.2022.118886
|
[6] |
S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural input/output and control configuration selection in large-scale systems,” IEEE Trans. Autom. Control, vol. 61, no. 2, pp. 303–318, Feb. 2016. doi: 10.1109/TAC.2015.2437525
|
[7] |
S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong structural controllability of undirected networks,” IEEE Trans. Autom. Control, vol. 63, no. 7, pp. 2234–2241, Jul. 2018. doi: 10.1109/TAC.2017.2762620
|
[8] |
X. Wang, Y. Xi, W. Huang, and S. Jia, “Deducing complete selection rule set for driver nodes to guarantee network’s structural controllability,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1152–1165, Sept. 2019. doi: 10.1109/JAS.2017.7510724
|
[9] |
L. Wang, G. Chen, X. Wang, and W. K. S. Tang, “Controllability of networked MIMO systems,” Automatica, vol. 69, pp. 405–409, Jul. 2016. doi: 10.1016/j.automatica.2016.03.013
|
[10] |
Y. Wang, C. Piao, C. Liu, C. Zhou, and J. Tang, “Modeling user interests with online social network influence by memory augmented sequence learning,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 541–554, Jan. 2021. doi: 10.1109/TNSE.2020.3044964
|
[11] |
D. Duan, C. Wu, and S. Si, “Predicting the survivability of invasive species with mutualistic and competing interaction networks,” Phys. A Stat. Mech. Appl., vol. 587, Feb. 2022.
|
[12] |
W. Zhu, M. Han, J. V. Milanovic, and P. Crossley, “Methodology for reliability assessment of smart grid considering risk of failure of communication architecture,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4358–4365, Sept. 2020. doi: 10.1109/TSG.2020.2982176
|
[13] |
S. Wandelt, X. Shi, and X. Sun, “Estimation and improvement of transportation network robustness by exploiting communities,” Rel. Eng. Syst. Saf., vol. 206, Feb. 2021.
|
[14] |
R. E. Kalman, “Mathematical description of linear dynamical systems,” J. SIAM Control Ser. A, vol. 1, no. 2, pp. 152–192, 1963.
|
[15] |
M. L. J. Hautus, “Controllability and observability conditions of linear autonomous systems,” Proc. K. Ned. Akad. Wet.,Ser. A., vol. 72, no. 5, pp. 443–448, 1969.
|
[16] |
L. Jiang, L. Tang, and J. Lv, “Controllability of multilayer networks,” Asian J. Control, vol. 24, no. 4, pp. 1517–1527, Jul. 2022. doi: 10.1002/asjc.2561
|
[17] |
Y. Hao, Z. Duan, and G. Chen, “Decentralised fixed modes of networked MIMO systems,” Int. J. Control, vol. 91, no. 4, pp. 859–873, 2018. doi: 10.1080/00207179.2017.1295318
|
[18] |
Z. Kong, L. Cao, L. Wang, and G. Guo, “Controllability of heterogeneous networked systems with nonidentical inner-coupling matrices,” IEEE Trans. Control Netw. Syst., vol. 9, no. 2, pp. 867–878, Jun. 2022. doi: 10.1109/TCNS.2021.3124907
|
[19] |
Y. Hao, Z. Duan, G. Chen, and F. Wu, “New controllability conditions for networked identical LTI systems,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4223–4228, Oct. 2019. doi: 10.1109/TAC.2019.2893899
|
[20] |
Y. Hao, Z. Duan, and G. Chen, “Further on the controllability of networked MIMO LTI systems,” Int. J. Robust Nonlinear Control, vol. 28, no. 5, pp. 1778–1788, Mar. 2018. doi: 10.1002/rnc.3986
|
[21] |
J. Ding, C. Wen, G. Li, P. Tu, D. Ji, Y. Zou, and J. Huang, “Target controllability in multilayer networks via minimum-cost maximum-flow method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 1949–1962, May 2021. doi: 10.1109/TNNLS.2020.2995596
|
[22] |
J. Wu, X. Li, and G. Chen, “Controllability of deep-coupling dynamical networks,” IEEE Trans. Circuits Syst. I. Reg. Papers, vol. 67, no. 12, pp. 5211–5222, Dec. 2020. doi: 10.1109/TCSI.2020.2999451
|
[23] |
M. Doostmohammadian and U. A. Khan, “Minimal sufficient conditions for structural observability/controllability of composite networks via Kronecker product,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp. 78–87, 2020.
|
[24] |
Y. Hao, Q. Wang, Z. Duan, and G. Chen, “Controllability of Kronecker product networks,” Automatica, vol. 110, Dec. 2019.
|
[25] |
Z. Yang, X. Wang, and L. Wang, “Controllability of multilayer networked sampled-data systems,” IEEE Trans. Cybern., May 2023. DOI: 10.1109/TCYB.2023.3271770
|
[26] |
B. She, S. S. Mehta, E. Doucette, C. Ton, and Z. Kan, “Characterizing energy-related controllability of composite complex networks via graph product,” IEEE Trans. Autom. Control, vol. 66, no. 7, pp. 3205–3212, Jul. 2021. doi: 10.1109/TAC.2020.3028840
|
[27] |
J. Gao, Y. Y. Liu, R. M. D’souza, and A. L. Barabási, “Target control of complex networks,” Nat. Commun., vol. 5, no. 1, p. 5415, Nov. 2014. doi: 10.1038/ncomms6415
|
[28] |
S. Roy and M. Xue, “Controllability-gramian submatrices for a network consensus model,” Syst. Control Lett., vol. 136, pp. 412–416, Feb. 2020.
|
[29] |
A. Vosughi, C. Johnson, M. Xue, S. Roy, and S. Warnick, “Target control and source estimation metrics for dynamical networks,” Automatica, vol. 100, pp. 412–416, Feb. 2019. doi: 10.1016/j.automatica.2018.11.054
|
[30] |
H. J. Van Waarde, M. K. Camlibel, and H. L. Trentelman, “A distance-based approach to strong target control of dynamical networks,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6266–6277, Dec. 2017. doi: 10.1109/TAC.2017.2709081
|
[31] |
K. Song, G. Li, X. Chen, L. Deng, G. Xiao, F. Zeng, and J. Pei, “Target controllability of two-layer multiplex networks based on network flow theory,” IEEE Trans. Cybern., vol. 51, no. 5, pp. 2699–2711, May 2021. doi: 10.1109/TCYB.2019.2906700
|
[32] |
Y. Hao, Q. Wang, Z. Duan, and G. Chen, “Target controllability of networked LTI systems,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 3, pp. 1493–1500, May 2022. doi: 10.1109/TNSE.2022.3146233
|
[33] |
M. Roman, Advanced Linear Algebra, New York, NY, USA: Springer, 2005.
|
[34] |
L. Xiang, P. Wang, F. Chen, and G. Chen, “Controllability of directed networked MIMO systems with heterogeneous dynamics,” IEEE Trans. Control Netw. Syst., vol. 7, no. 2, pp. 807–817, Jun. 2020. doi: 10.1109/TCNS.2019.2948994
|
[35] |
E. Kreindler and P. Sarachik, “On the concepts of controllability and observability of linear systems,” IEEE Trans. Autom. Control, vol. 9, no. 2, pp. 129–136, 1964. doi: 10.1109/TAC.1964.1105665
|