IEEE/CAA Journal of Automatica Sinica
Citation: | S. Cong and Z. Dong, “Pure state feedback switching control based on the online estimated state for stochastic open quantum systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2166–2178, Oct. 2024. doi: 10.1109/JAS.2023.124071 |
For the n-qubit stochastic open quantum systems, based on the Lyapunov stability theorem and LaSalle’s invariant set principle, a pure state switching control based on on-line estimated state feedback (short for OQST-SFC) is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state. The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method, in which the Lyapunov function is the state distance of the system. The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state, and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state. At the same time, the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier (QST-OADM) are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller. Then, the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system. The complete derivation process of n-qubit QST-OADM algorithm is given; Through strict theoretical proof and analysis, the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given. The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments. Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed, and the performances of the state transition under the corresponding cases are analyzed.
[1] |
A. Kalev and I. Hen, “Fidelity-optimized quantum state estimation,” New J. Physics, vol. 17, p. 93008, 2015. doi: 10.1088/1367-2630/17/9/093008
|
[2] |
J. Zhang, S. Cong, Q. Ling, and K. Li, “An efficient and fast quantum state estimator with sparse disturbance,” IEEE Trans. Cybern., vol. 49, pp. 2546–2555, 2018.
|
[3] |
G. A. Smith, A. Silberfarb, I. H. Deutsch, and P. S. Jessen, “Efficient quantum-state estimation by continuous weak measurement and dynamical control,” Phys. Rev. L., vol. 97, p. 180403, 2006. doi: 10.1103/PhysRevLett.97.180403
|
[4] |
F. Huszar and N. M. T. Houlsby, “Adaptive Bayesian quantum tomography,” Phys. Rev. A, vol. 85, p. 52120, 2012. doi: 10.1103/PhysRevA.85.052120
|
[5] |
K. Li and S. Cong, “A robust compressive quantum state tomography algorithm using ADMM,” in Proc. 19th World Congr. Int. Federation Automa. Control, 2014, pp. 6878–6883.
|
[6] |
A. Silberfarb, P. S. Jessen, and I. H. Deutsch, “Quantum state reconstruction via continuous measurement,” Phys. Rev. A, vol. 95, p. 30402, 2005.
|
[7] |
A. Youssry, C. Ferrie, and M. Tomamichel, “Efficient online quantum state estimation using a matrix-exponentiated gradient method,” New J. Physics, vol. 21, p. 33006, 2019. doi: 10.1088/1367-2630/ab0438
|
[8] |
J. Yang, S. Cong, and S. Kuang, “Real-time quantum state estimation based on continuous weak measurement and compressed sensing,” in Proc. Int. Multi. Conf. Engineers and Computer Scientists, 2018, vol. 2, pp. 499–504.
|
[9] |
S. Cong, Y. Tang, H. Sajede, K. Li, and J. Yang, “On-line quantum state estimation using continuous weak measurement and compressed sensing,” SCIENCE CHINA Information Sciences, vol. 64, p. 189202, 2021. doi: 10.1007/s11432-018-9793-2
|
[10] |
K. Zhang, S. Cong, and K. Li, “An online optimization algorithm for the real-time quantum state tomography,” Quantum Inf. Process, vol. 19, p. 361, 2020. doi: 10.1007/s11128-020-02866-4
|
[11] |
D. D’alessandro and M. Dahleh, “Optimal control of two-level quantum system,” IEEE Trans. Automatic Control, vol. 46, pp. 866–876, 2011.
|
[12] |
Y. Peng and F. Gaitan, “High-fidelity quantum state preparation using neighboring optimal control,” Quantum Inf. Process, vol. 16, p. 261, 2017. doi: 10.1007/s11128-017-1715-7
|
[13] |
D. Y. Dong and I. R. Petersen, “Sliding mode control of two-level quantum systems,” Automatica, vol. 48, pp. 725–735, 2012. doi: 10.1016/j.automatica.2012.02.003
|
[14] |
M. R. James, H. I. Nurdin, and I. R. Petersen, “H∞ control of linear quantum stochastic systems,” IEEE Trans. Automatic Control, vol. 53, pp. 1787–1803, 2008. doi: 10.1109/TAC.2008.929378
|
[15] |
X. Lu and S. Kuang, “Coherent H∞ control for linear quantum passive systems with model uncertainties,” IET Control Theory and Applica tions, vol. 13, pp. 711–720, 2019. doi: 10.1049/iet-cta.2018.6183
|
[16] |
S. Kuang and S. Cong, “Lyapunov control methods of closed quantum systems,” Automatica, vol. 44, pp. 98–108, 2008. doi: 10.1016/j.automatica.2007.05.013
|
[17] |
X. Wang and S. G. Schirmer, “Analysis of effectiveness of Lyapunov control for non-generic quantum states,” IEEE Trans. Autom. Control, vol. 55, pp. 1406–1411, 2010. doi: 10.1109/TAC.2010.2042760
|
[18] |
J. Zhang, Y. X. Liu, R. B. Wu, K. Jacobs, and F. Nori, “Quantum feedback: Theory, experiments, and applications,” Phys. Rep, vol. 679, pp. 1–60, 2017. doi: 10.1016/j.physrep.2017.02.003
|
[19] |
H. R. Van and J. K. Stockton, “Feedback control of quantum state reduction,” IEEE Trans. Autom. Control, vol. 50, pp. 768–780, 2004.
|
[20] |
M. Mirranimi and H. R. Van, “Stabilizing feedback controls for quantum systems,” Siam J. Control and Optimization, vol. 46, pp. 445–467, 2007. doi: 10.1137/050644793
|
[21] |
K. Tsumura, “Global stabilization of N-dimensional quantum spin systems via continuous feedback,” in Proc. American Control Conf., 2007, pp. 2129–2134.
|
[22] |
S. Ge, T. Vu, and C. Hang, “Non-smooth Lyapunov function-based global stabilization for quantum filters,” Automatica, vol. 48, pp. 1031–1044, 2012. doi: 10.1016/j.automatica.2012.03.001
|
[23] |
S. Cong, J. Wen, and S. Kuang, “Global stabilization of an eigenstate for stochastic quantum systems,” in Proc. 12th IEEE Int. Conf. Control and Automation, 2016, pp. 966–971.
|
[24] |
S. Cong, J. Wen, and S. Kuang, “Global stabilization control of stochastic quantum systems,” Science China Information Sciences, vol. 59, p. 122502, 2016.
|
[25] |
J. Wen, Y. Shi, and X. Lu, “Stabilizing a class of mixed states for stochastic quantum systems via switching control,” J. Franklin Institute, vol. 355, pp. 2562–2582, 2018. doi: 10.1016/j.jfranklin.2018.01.031
|
[26] |
H. Min, S. Xu, B. Zhang, Q. Ma, and D. Yuan, “Fixed-time Lyapunov criteria and state-feedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, 2022. doi: 10.1109/JAS.2022.105539
|
[27] |
F. Ticozzi, K. Nishio, and C. Altafini, “Stabilization of stochastic quantum dynamics via open-loop and closed-loop control,” IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 74–85, 2013. doi: 10.1109/TAC.2012.2206713
|
[28] |
T. Benoist, C. Pellegrini, and F. Ticozzi, “Exponential stability of subspaces for quantum stochastic master equations,” Annales Henri Poincaré, vol. 18, no. 6, pp. 2045–2074, 2017.
|
[29] |
Z. X. Dong and S. Cong, “Pure state switching feedback control for stochastic open quantum systems,” Control Theory and Applications, vol. 39, no. 1, pp. 179–186, 2022.
|
[30] |
S. Harraz and S. Cong, and K. Li, “On-line quantum state tomography of n-qubit via continuous weak measurement and compressed sensing,” Int. J. Quantum Inform., vol. 19, no. 8, pp. 2040006-1–2040006-18, 2021.
|
[31] |
S. Cong, Control of Quantum Systems: Theory and Methods, Singapore: Wiley, Singapore Pte. Ltd, 2014.
|
[32] |
J. K. Brooks, “Stochastic processes and stochastic integration in banach spaces-sciencedirect,” in Handbook of Measure Theory, Gainesville, USA: University of Florida, 2002, pp. 32611–2082.
|