A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 3
Mar.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
W. Zhang, H. Hao, and Y. Zhang, “State of charge prediction of lithium-ion batteries for electric aircraft with swin transformer,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 645–647, Mar. 2025. doi: 10.1109/JAS.2023.124020
Citation: W. Zhang, H. Hao, and Y. Zhang, “State of charge prediction of lithium-ion batteries for electric aircraft with swin transformer,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 645–647, Mar. 2025. doi: 10.1109/JAS.2023.124020

State of Charge Prediction of Lithium-Ion Batteries for Electric Aircraft With Swin Transformer

doi: 10.1109/JAS.2023.124020
More Information
  • loading
  • [1]
    Z. Fei, F. Yang, K.-L. Tsui, L. Li, and Z. Zhang, “Early prediction of battery lifetime via a machine learning based framework,” Energy, vol. 225, p. 120205, Jun. 2021.
    [2]
    K. S. R. Mawonou, A. Eddahech, D. Dumur, D. Beauvois, and E. Godoy, “State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking,” J Power Sources, vol. 484, p. 229154, Feb. 2021.
    [3]
    W. Zhang, X. Li, and X. Li, “Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation,” Measurement, vol. 164, p. 108052, Nov. 2020.
    [4]
    Y. Zhu, X. Li, Y. Zhang, and W. Zhang, “Cross-domain prognostic method of lithium-ion battery in new energy electric aircraft with domain adaptation,” IEEE Sensors J., vol. 23, no. 13, pp. 14487–14498, Jul. 2023. doi: 10.1109/JSEN.2023.3277131
    [5]
    M. Peter, H. A. Ghali, S. Memon, and F. Duan, “Electric vehicles lithium-polymer ion battery dynamic behaviour charging identification and modelling scheme,” J. Dynamics, vol. 2, no. 3, pp. 170–176, Aug. 2023.
    [6]
    K. Liu, Q. Peng, R. Teodorescu, and A. M. Foley, “Knowledge-guided data-driven model with transfer concept for battery calendar ageing trajectory prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 272–274, Jan. 2023. doi: 10.1109/JAS.2023.123036
    [7]
    B. Liu, H. Wang, M.-L. Tseng, and Z. Li, “State of charge estimation for lithium-ion batteries based on improved barnacle mating optimizer and support vector machine,” J. Energy Storage, vol. 55, p. 105830, 2022.
    [8]
    X. Li, S. Yu, Y. Lei, N. Li, and B. Yang, “Intelligent machinery fault diagnosis with event-based camera,” IEEE Trans. Ind. Informatics, vol. 20, no. 1, pp. 380–389, 2024.
    [9]
    W. Zhang, and X. Li, “Data privacy preserving federated transfer learning in machinery fault diagnostics using prior distributions,” Structural Health Monitoring, vol. 21, no. 4, pp. 1329–1344, Jul. 2023.
    [10]
    X. Li, C. Zhang, X. Li, and W, Zhang, “Federated transfer learning in fault diagnosis under data privacy with target self-adaptation,” J. Manufacturing Systems, vol. 68, pp. 523–535, Jun. 2023. doi: 10.1016/j.jmsy.2023.05.006
    [11]
    B. Peter Adedeji, and G. Kabir, “A feedforward deep neural network for predicting the state-of-charge of lithium-ion battery in electric vehicles,” Decision Analytics J., vol. 8, p. 100255, Sept. 2023.
    [12]
    C. Vidal, P. Malysz, M. Naguib, A. Emadi, and P. J. Kollmeyer, “Estimating battery state of charge using recurrent and non-recurrent neural networks,” J. Energy Storage, vol. 47, p. 103660, Mar. 2022.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (9) PDF downloads(5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return