Citation: | X. Chen, S. Hu, X. Xie, and J. Qiu, “Consensus-based distributed secondary control of microgrids: A pre-assigned time sliding mode Approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2525–2527, Dec. 2024. doi: 10.1109/JAS.2023.123891 |
[1] |
Y. Ojo, J. D. Watson, K. Laib, et al., “A distributed scheme for voltage and frequency control and power sharing in inverter-based microgrids,” IEEE Trans. Control Syst. Technol., vol. 31, no. 4, pp. 1679–1691, Jul. 2023. doi: 10.1109/TCST.2023.3238668
|
[2] |
A. Navas-Fonseca, C. Burgos-Mellado, J. S. Gómez, et al., “Distributed predictive secondary control for imbalance sharing in AC microgrids,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 20–37, 2022. doi: 10.1109/TSG.2021.3108677
|
[3] |
G. Zhao, L. Jin, H. Cui, and Y. Zhao, “Distributed adaptive dynamic event-triggered secondary control for islanded microgrids with disturbances,” IEEE Trans. Smart Grid, vol. 14, no. 6, pp. 4268–4281, Nov. 2023. doi: 10.1109/TSG.2023.3264979
|
[4] |
M. Huang, L. Ding, W. Li, et al., “Distributed observer-based H∞ Fault-tolerant control for DC microgrids with sensor fault,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 68, no. 4, pp. 1659–1670, 2021. doi: 10.1109/TCSI.2020.3048971
|
[5] |
Y. Jiang, Y. Yang, S.-C. Tan, and S. Y. Hui, “Distributed sliding mode observer-based secondary control for DC microgrids under cyber-attacks,” IEEE,J. Emerg. Sel. Top. Circuits Syst., vol. 11, no. 1, pp. 144–154, 2021. doi: 10.1109/JETCAS.2020.3046781
|
[6] |
Y. Liu, H. Li, R. Lu, et al., “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, 2022. doi: 10.1109/JAS.2022.105413
|
[7] |
B. Ning, Q.-L. Han, and L. Ding, “Distributed secondary control of ac microgrids with external disturbances and directed communication topologies: A full-order sliding-mode approach,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 554–564, 2021. doi: 10.1109/JAS.2020.1003315
|
[8] |
Z. Zuo, Q.-L. Han, B. Ning, et al., “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2322–2334, 2018. doi: 10.1109/TII.2018.2817248
|
[9] |
T. Wei and X. Li, “Fixed-time and predefined-time stability of impulsive systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1086–1089, 2023. doi: 10.1109/JAS.2023.123147
|
[10] |
B. Ning, Q.-L. Han, Z. Zuo, et al., “Fixed-time and prescribed-time consensus control of multiagent systems and its applications: A survey of recent trends and methodologies,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1121–1135, 2023. doi: 10.1109/TII.2022.3201589
|
[11] |
Y. Song, H. Ye, and F. L. Lewis, “Prescribed-time control and its latest developments,” IEEE Trans. Syst. Man,Cybern. Syst, vol. 53, no. 7, pp. 4102–4116, 2023. doi: 10.1109/TSMC.2023.3240751
|
[12] |
B. Ning, Q.-L. Han, and L. Ding, “Distributed finite-time secondary frequency and voltage control for islanded microgrids with communication delays and switching topologies,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 3988–3999, 2021. doi: 10.1109/TCYB.2020.3003690
|
[13] |
B. Ning, Q.-L. Han, and Z. Zuo, “Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2739–2745, 2021. doi: 10.1109/TAC.2020.3008125
|
[14] |
A. K. Pal, S. Kamal, S. K. Nagar, et al., “Design of controllers with arbitrary convergence time,” Automatica, vol. 112, p. 108710, 2020. doi: 10.1016/j.automatica.2019.108710
|
[15] |
X. Chen, H. Liu, G. Wen, et al., “Adaptive neural preassigned-time control for macro-micro composite positioning stage with displacement constraints,” IEEE Trans. Ind. Informat., vol. 20, no. 2, pp. 1103–1112, Feb. 2024. doi: 10.1109/TII.2023.3254602
|