IEEE/CAA Journal of Automatica Sinica
Citation: | K. Xia, X. Li, K. Li, and Y. Zou, “Distributed predefined-time control for cooperative tracking of multiple quadrotor UAVs,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2179–2181, Oct. 2024. doi: 10.1109/JAS.2023.123861 |
[1] |
K. Xia, M. Shin, W. Chung, M. Kim, S. Lee, and H. Son, “Landing a quadrotor UAV on a moving platform with sway motion using robust control,” Control Engineering Practice, vol. 128, p. 105288, 2022. doi: 10.1016/j.conengprac.2022.105288
|
[2] |
K. Xia, S.-M. Lee, W. Chung, Y. Zou, and H. Son, “Moving target landing of a quadrotor using robust optimal guaranteed cost control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 819–821, 2023. doi: 10.1109/JAS.2023.123108
|
[3] |
Z. Zuo, C. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control methods and future challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 601–614, 2022. doi: 10.1109/JAS.2022.105410
|
[4] |
Z. Miao, H. Zhong, J. Lin, Y. Wang, and R. Fierro, “Geometric formation tracking of quadrotor UAVs using pose-only measurements,” IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 69, no. 3, pp. 1159–1163, 2022. doi: 10.1109/TCSII.2021.3103447
|
[5] |
Y. Zou, K. Xia, and W. He, “Adaptive fault-tolerant distributed formation control of clustered vertical takeoff and landing UAVs,” IEEE Trans. Aerospace and Electronic Systems, vol. 58, no. 2, pp. 1069–1082, 2022. doi: 10.1109/TAES.2021.3117368
|
[6] |
Y. Zou and Z. Meng, “Coordinated trajectory tracking of multiple vertical take-off and landing UAVs,” Automatica, vol. 99, pp. 33–40, 2019. doi: 10.1016/j.automatica.2018.10.011
|
[7] |
D. Wang, Q. Zong, B. Tian, F. Wang, and L. Dou, “Finite-time fully distributed formation reconfiguration control for UAV helicopters,” Int. J. Robust and Nonlinear Control, vol. 28, no. 18, pp. 5943–5961, 2018. doi: 10.1002/rnc.4361
|
[8] |
J. Wang, C. Bi, D. Wang, Q. Kuang, and C. Wang, “Finite-time distributed event-triggered formation control for quadrotor UAVs with experimentation,” ISA Trans., vol. 126, pp. 585–596, 2022. doi: 10.1016/j.isatra.2021.07.049
|
[9] |
Y. Xu, Y. Qu, D. Luo, and H. Duan, “Distributed fixed-time time-varying formation-containment control for networked underactuated quadrotor UAVs with unknown disturbances,” Aerospace Science and Technology, vol. 130, p. 107909, 2022. doi: 10.1016/j.ast.2022.107909
|
[10] |
A. Garza-Alonso, M. Basin, and P. C. Rodriguez-Ramirez, “Predefined-time backstepping stabilization of autonomous nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2020–2022, 2022. doi: 10.1109/JAS.2022.105953
|
[11] |
Y. Wang, Y. Song, D. J. Hill, and M. Krstic, “Prescribed-time consensus and containment control of networked multiagent systems,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1138–1147, 2019. doi: 10.1109/TCYB.2017.2788874
|
[12] |
X. Gong, Y. Cui, T. Wang, J. Shen, and T. Huang, “Distributed prescribed-time consensus observer for high-order integrator multi-agent systems on directed graphs,” IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 69, no. 4, pp. 2216–2220, 2022. doi: 10.1109/TCSII.2021.3127358
|
[13] |
X. Gong, Y. Cui, J. Shen, J. Xiong, and T. Huang, “Distributed optimization in prescribed-time: Theory and experiment,” IEEE Trans. Network Science and Engineering, vol. 9, no. 2, pp. 564–576, 2022. doi: 10.1109/TNSE.2021.3126154
|
[14] |
H. Khalil, Nonlinear Systems, 3rd Eds. Englewood, USA: Prentice-Hall, 2002.
|