IEEE/CAA Journal of Automatica Sinica
Citation: | L. Zou, Z. D. Wang, B. Shen, H. L. Dong, and G. P. Lu, “Encrypted finite-horizon energy-to-peak state estimation for time-varying systems under eavesdropping attacks: Tackling secrecy capacity,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 985–996, Apr. 2023. doi: 10.1109/JAS.2023.123393 |
[1] |
D. Ciuonzo, A. Aubry, and V. Carotenuto, “Rician MIMO channel-aware and jamming-aware decision fusion,” IEEE Trans. Signal Processing, vol. 65, no. 15, pp. 3866–3880, 2017. doi: 10.1109/TSP.2017.2686375
|
[2] |
R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Covariance-based fusion filtering for networked systems with random transmission delays and non-consecutive losses,” Int. J. General Systems, vol. 46, no. 7, pp. 752–771, 2017. doi: 10.1080/03081079.2017.1341501
|
[3] |
R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked fusion estimation with multiple uncertainties and time-correlated channel noise,” Information Fusion, vol. 54, pp. 161–171, 2020. doi: 10.1016/j.inffus.2019.07.008
|
[4] |
X. Chen and Q. Song, “State estimation for quaternion-valued neural networks with multiple time delays,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 49, no. 11, pp. 2278–2287, Nov. 2019. doi: 10.1109/TSMC.2017.2776940
|
[5] |
J. Hu, C. Jia, H. Liu, X. Yi, and Y. Liu, “A survey on state estimation of complex dynamical networks,” Int. J. Syst. Science, vol. 52, no. 16, pp. 3351–3367, Dec. 2021. doi: 10.1080/00207721.2021.1995528
|
[6] |
Q. Li, J. Liang, and H. Qu, “H∞ estimation for stochastic semi-Markovian switching CVNNs with missing measurements and mode-dependent delays,” Neural Networks, vol. 141, pp. 281–293, Sept. 2021. doi: 10.1016/j.neunet.2021.04.022
|
[7] |
E. Mousavinejad, X. Ge, Q.-L. Han, T. J. Lim, and L. Vlacic, “An ellipsoidal set-membership approach to distributed joint state and sensor fault estimation of autonomous ground vehicles,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1107–1118, Jun. 2021. doi: 10.1109/JAS.2021.1004015
|
[8] |
Q. Song, S. Chen, Z. Zhao, Y. Liu, and F. E. Alsaadi, “Passive filter design for fractional-order quaternion-valued neural networks with neutral delays and external disturbance,” Neural Networks, vol. 137, pp. 18–30, May 2021. doi: 10.1016/j.neunet.2021.01.008
|
[9] |
L. Yu, Y. Liu, Y. Cui, N. D. Alotaibi, and F. E. Alsaadi, “Intermittent dynamic event-triggered state estimation for delayed complex networks based on partial nodes,” Neurocomputing, vol. 459, pp. 59−69, Oct. 2021.
|
[10] |
Z.-M. Li, X.-H. Chang, K. Mathiyalagan, and J. Xiong, “Robust energy-to-peak filtering for discrete-time nonlinear systems with measurement quantization,” Signal Processing, vol. 139, pp. 102–109, Oct. 2017. doi: 10.1016/j.sigpro.2017.03.029
|
[11] |
H. Shen, Z.-G. Wu, and J. H. Park, “Finite-time energy-to-peak filtering for Markov jump repeated scalar non-linear systems with packet dropouts,” IET Control Theory &Applications, vol. 8, no. 16, pp. 1617–1624, Nov. 2014.
|
[12] |
L. Zou, Z. Wang, H. Dong, and Q.-L. Han, “Energy-to-peak state estimation with intermittent measurement outliers: The single-output case,” IEEE Trans. Cybernetics, vol. 52, no. 11, pp. 11504–11515, Nov. 2022. doi: 10.1109/TCYB.2021.3057545
|
[13] |
H. Liu, Z. Wang, W. Fei, and J. Li, “H∞ and l2–l∞ state estimation for delayed memristive neural networks on finite horizon: The round-robin protocol,” Neural Networks, vol. 132, pp. 121–130, Dec. 2020. doi: 10.1016/j.neunet.2020.08.006
|
[14] |
J. Zhang, L. Ma, Y. Liu, M. Lyu, F. E. Alsaadi, and Y. Bo, “H∞ and l2−l∞ finite-horizon filtering with randomly occurring gain variations and quantization effects,” Applied Mathematics and Computation, vol. 298, pp. 171–187, Apr. 2017. doi: 10.1016/j.amc.2016.11.014
|
[15] |
Y. Chen, J. Ren, X. Zhao, and A. Xue, “State estimation of Markov jump neural networks with random delays by redundant channels,” Neurocomputing, vol. 453, pp. 493–501, Sept. 2021. doi: 10.1016/j.neucom.2020.09.081
|
[16] |
J. Hu, Z. Wang, and G.-P. Liu, “Delay compensation-based state estimation for time-varying complex networks with incomplete observations and dynamical bias,” IEEE Trans. Cyber., vol. 52, no. 11, pp. 12071–12083 , 2022. doi: 10.1109/TCYB.2020.3043283
|
[17] |
B. Jiang, H. Dong, Y. Shen, and S. Mu, “Encoding-decoding-based recursive filtering for fractional-order systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1103–1106, Jun. 2022. doi: 10.1109/JAS.2022.105644
|
[18] |
N. Li, Q. Li, and J. Suo, “Dynamic event-triggered H∞ state estimation for delayed complex networks with randomly occurring nonlinearities,” Neurocomputing, vol. 421, pp. 97–104, Jan. 2021. doi: 10.1016/j.neucom.2020.08.048
|
[19] |
L. Ma, Z. Wang, Y. Chen, and X. Yi, “Probability-guaranteed distributed filtering for nonlinear systems with innovation constraints over sensor networks,” IEEE Trans. Control Network Systems, vol. 8, no. 2, pp. 951–963, Jun. 2021. doi: 10.1109/TCNS.2021.3049361
|
[20] |
Y. Niu, L. Sheng, M. Gao, and D. Zhou, “Dynamic event-triggered state estimation for continuous-time polynomial nonlinear systems with external disturbances,” IEEE Trans. Industrial Informatics, vol. 17, no. 6, pp. 3962–3970, Jun. 2020.
|
[21] |
X.-M. Zhang, Q.-L. Han, and B.-L. Zhang, “An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems,” IEEE Trans. Industrial Informatics, vol. 13, no. 1, pp. 4–16, Feb. 2017. doi: 10.1109/TII.2016.2607150
|
[22] |
Y. Zhao, X. He, L. Ma, and H. Liu, “Unbiasedness-constrained least squares state estimation for time-varying systems with missing measurements under round-robin protocol,” Int. J. Systems Science, vol. 53, no. 9, pp. 1925–1941, Jul. 2022. doi: 10.1080/00207721.2022.2031338
|
[23] |
D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Systems,Man,and Cyber.: Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021. doi: 10.1109/TSMC.2020.3041121
|
[24] |
X. Ge, F. Yang, and Q.-L. Han, “Distributed networked control systems: A brief overview,” Information Sciences, vol. 380, pp. 117–131, Feb. 2017. doi: 10.1016/j.ins.2015.07.047
|
[25] |
J. Cheng, Y. Wu, Z.-G. Wu, and H. Yan, “Nonstationary filtering for fuzzy Markov switching affine systems with quantization effects and deception attacks,” IEEE Trans. Systems,Man,and Cybe.: Syst., vol. 52, no. 10, pp. 6545–6554, 2022. doi: 10.1109/TSMC.2022.3147228
|
[26] |
D. Ding, H. Liu, H. Dong, and H. Liu, “Resilient filtering of nonlinear complex dynamical networks under randomly occurring faults and hybrid cyber-attacks,” IEEE Trans. Network Science and Engineering, vol. 9, no. 4, pp. 2341–2352, Jul.–Aug. 2022. doi: 10.1109/TNSE.2022.3163258
|
[27] |
H. Song, D. Ding, H. Dong, and Q.-L. Han, “Distributed maximum correntropy filtering for stochastic nonlinear systems under deception attacks,” IEEE Trans. Cyber., vol. 52, no. 5, pp. 3733–3744, May 2022. doi: 10.1109/TCYB.2020.3016093
|
[28] |
H. Xiao, D. Ding, H. Dong, and G. Wei, “Adaptive event-triggered state estimation for large-scale systems subject to deception attacks,” Science China Information Sciences, vol. 65, no. 2, p. 122207, Feb. 2022.
|
[29] |
X. Ge, Q.-L. Han, M. Zhong, and X.-M. Zhang, “Distributed Krein space-based attack detection over sensor networks under deception attacks,” Automatica, vol. 109, p. 108557, Nov. 2019.
|
[30] |
L. Huang, K. Ding, A. S. Leong, D. E. Quevedo, and L. Shi, “Encryption scheduling for remote state estimation under an operation constraint,” Automatica, vol. 127, p. 109537, May 2021.
|
[31] |
K. Miao, W.-A. Zhang, and X. Qiu, “An adaptive unscented Kalman filter approach to secure state estimation for wireless sensor networks,” Asian J. Control, vol. 25, no. 1, pp. 629– 636, 2023. doi: 10.1002/asjc.2783
|
[32] |
A. Tsiamis, K. Gatsis, and G. J. Pappas, “State-secrecy codes for networked linear systems,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2001–2015, May 2020. doi: 10.1109/TAC.2019.2927459
|
[33] |
L. Wang, X. Cao, H. Zhang, C. Sun, and W. X. Zheng, “Transmission scheduling for privacy-optimal encryption against eavesdropping attacks on remote state estimation,” Automatica, vol. 137, p. 110145, Mar. 2022.
|
[34] |
W. Xu, G. Hu, D. W. C. Ho, and Z. Feng, “Distributed secure cooperative control under denial-of-service attacks from multiple adversaries,” IEEE Trans. Cybernetics, vol. 50, no. 8, pp. 3458–3467, Aug. 2020. doi: 10.1109/TCYB.2019.2896160
|
[35] |
W. Yang, Z. Zheng, G. Chen, Y. Tang, and X. Wang, “Security analysis of a distributed networked system under eavesdropping attacks,” IEEE Trans. Circuits and Syst. II: Express Briefs, vol. 67, no. 7, pp. 1254–1258, Jul. 2020. doi: 10.1109/TCSII.2019.2928558
|
[36] |
K. Ding, X. Ren, A. S. Leong, D. E. Quevedo, and L. Shi, “Remote state estimation in the presence of an active eavesdropper,” IEEE Trans. Autom. Control, vol. 66, no. 1, pp. 229–244, Jan. 2021. doi: 10.1109/TAC.2020.2980730
|
[37] |
A. S. Leong, D. E. Quevedo, D. Dolz, and S. Dey, “Transmission scheduling for remote state estimation over packet dropping links in the presence of an eavesdropper,” IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3732–3739, Sept. 2019. doi: 10.1109/TAC.2018.2883246
|
[38] |
A. Tsiamis, K. Gatsis, and G. J. Pappas, “State estimation with secrecy against eavesdroppers,” in Proc. 20th World Congr. Int.-Federation-of-Automatic-Control, Jul. 2017, vol. 50, no. 1, pp. 8385−8392.
|
[39] |
W. Yang, D. Li, H. Zhang, Y. Tang, and W. X. Zheng, “An encoding mechanism for secrecy of remote state estimation,” Automatica, vol. 120, p. 109116, Oct. 2020.
|
[40] |
A. S. Leong, A. Redder, D. E. Quevedo, and S. Dey, “On the use of artificial noise for secure state estimation in the presence of eavesdroppers,” in Proc. European Control Conf., Limassol, Cyprus, 2018, pp. 325−330.
|
[41] |
H.-M. Wang, C. Wang, D. W. K. Ng, M. H. Lee, and J. Xiao, “Artificial noise assisted secure transmission for distributed antenna systems,” IEEE Trans. Signal Processing, vol. 64, no. 15, pp. 4050–4064, Aug. 2016. doi: 10.1109/TSP.2016.2558164
|
[42] |
D. Xu, X. Yan, B. Chen, and L. Yu, “Energy-constrained confidentiality fusion estimation against eavesdroppers,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 69, no. 2, pp. 624–628, Feb. 2022. doi: 10.1109/TCSII.2021.3102327
|
[43] |
N. A. Sarker and M. F. Samad, “Capacity and outage performance analysis of secure cooperative RF-FSO relaying system in the presence of multiple eavesdroppers,” Physical Communi., vol. 49, p. 101477, Dec. 2021.
|
[44] |
M. Z. I. Sarkar and T. Ratnarajah, “Enhancing security in correlated channel with maximal ratio combining diversity,” IEEE Trans. Signal Processing, vol. 60, no. 12, pp. 6745–6751, 2012. doi: 10.1109/TSP.2012.2213080
|
[45] |
K. Reif, S. Günther, E. Yaz, and R. Unbehauen, “Stochastic stability of the discrete-time extended Kalman filter,” IEEE Trans. Autom. Control, vol. 44, no. 4, pp. 714–728, Apr. 1999. doi: 10.1109/9.754809
|
[46] |
J. Mao, Y. Sun, X. Yi, H. Liu, and D. Ding, “Recursive filtering of networked nonlinear systems: A survey,” Int. J. Syst. Science, vol. 52, no. 6, pp. 1110–1128, Apr. 2021. doi: 10.1080/00207721.2020.1868615
|
[47] |
P. Zhang, Y. Yuan, and L. Guo, “Fault-tolerant optimal control for discrete-time nonlinear system subjected to input saturation: A dynamic event-triggered approach,” IEEE Trans. Cybernetics, vol. 51, no. 6, pp. 2956–2968, Jun. 2021. doi: 10.1109/TCYB.2019.2923011
|
[48] |
H. Geng, H. Liu, L. Ma, and X. Yi, “Multi-sensor filtering fusion meets censored measurements under a constrained network environment: advances, challenges and prospects,” Int. J. Syst. Science, vol. 52, no. 16, pp. 3410–3436, 2021. doi: 10.1080/00207721.2021.2005178
|